Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):85–89. doi: 10.1042/bj3150085

Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L.

D Brömme 1, J L Klaus 1, K Okamoto 1, D Rasnick 1, J T Palmer 1
PMCID: PMC1217200  PMID: 8670136

Abstract

Peptidyl vinyl sulphones are a novel class of extremely potent and specific cysteine protease inhibitors. They are highly active against the therapeutically important cathepsins O2, S and L. The highest kinact/K1 values exceed 10(7)M(-1) x s(-1) for cathepsin S and 10(5)M(-1) x s(-1) for cathepsins O2 and L. To study the primary specificity site of the novel human cathepsin O2 and the effectiveness of this novel class of inhibitors, a series of peptidyl vinyl sulphones with variations in the P2 residue was synthesized. Leucine in the P2 position was proven to be the most effective residue for cathepsin O2 and also for cathepsins S and L. Cathepsins O2 and S share a decreased accessibility towards P2 hydrophobic non-branched residues such as aminohexanoic acid (norleucine), methionine and oxidized methionine, but are distinguished by their different affinity towards phenylalanine in the P2 position. In contrast, cathepsin S accepts a broader range of hydrophobic residues in its S2 subsite than cathepsins O2 and L. The primary specificity-determining subsite pocket S2 in cathepsin O2 appears to be spatially more restricted than those of cathepsins S and L.

Full Text

The Full Text of this article is available as a PDF (431.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed N. K., Martin L. A., Watts L. M., Palmer J., Thornburg L., Prior J., Esser R. E. Peptidyl fluoromethyl ketones as inhibitors of cathepsin B. Implication for treatment of rheumatoid arthritis. Biochem Pharmacol. 1992 Sep 25;44(6):1201–1207. doi: 10.1016/0006-2952(92)90385-v. [DOI] [PubMed] [Google Scholar]
  2. Baici A., Gyger-Marazzi M. The slow, tight-binding inhibition of cathepsin B by leupeptin. A hysteretic effect. Eur J Biochem. 1982 Dec;129(1):33–41. doi: 10.1111/j.1432-1033.1982.tb07017.x. [DOI] [PubMed] [Google Scholar]
  3. Barrett A. J., Kirschke H. Cathepsin B, Cathepsin H, and cathepsin L. Methods Enzymol. 1981;80(Pt 100):535–561. doi: 10.1016/s0076-6879(81)80043-2. [DOI] [PubMed] [Google Scholar]
  4. Brömme D., Bonneau P. R., Lachance P., Wiederanders B., Kirschke H., Peters C., Thomas D. Y., Storer A. C., Vernet T. Functional expression of human cathepsin S in Saccharomyces cerevisiae. Purification and characterization of the recombinant enzyme. J Biol Chem. 1993 Mar 5;268(7):4832–4838. [PubMed] [Google Scholar]
  5. Brömme D., Demuth H. U. N,O-diacyl hydroxamates as selective and irreversible inhibitors of cysteine proteinases. Methods Enzymol. 1994;244:671–685. doi: 10.1016/0076-6879(94)44050-6. [DOI] [PubMed] [Google Scholar]
  6. Brömme D., Neumann U., Kirschke H., Demuth H. U. Novel N-peptidyl-O-acyl hydroxamates: selective inhibitors of cysteine proteinases. Biochim Biophys Acta. 1993 Oct 6;1202(2):271–276. doi: 10.1016/0167-4838(93)90015-j. [DOI] [PubMed] [Google Scholar]
  7. Brömme D., Okamoto K. Human cathepsin O2, a novel cysteine protease highly expressed in osteoclastomas and ovary molecular cloning, sequencing and tissue distribution. Biol Chem Hoppe Seyler. 1995 Jun;376(6):379–384. doi: 10.1515/bchm3.1995.376.6.379. [DOI] [PubMed] [Google Scholar]
  8. Brömme D., Schierhorn A., Kirschke H., Wiederanders B., Barth A., Fittkau S., Demuth H. U. Potent and selective inactivation of cysteine proteinases with N-peptidyl-O-acyl hydroxylamines. Biochem J. 1989 Nov 1;263(3):861–866. doi: 10.1042/bj2630861. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Buttle D. J., Handley C. J., Ilic M. Z., Saklatvala J., Murata M., Barrett A. J. Inhibition of cartilage proteoglycan release by a specific inactivator of cathepsin B and an inhibitor of matrix metalloproteinases. Evidence for two converging pathways of chondrocyte-mediated proteoglycan degradation. Arthritis Rheum. 1993 Dec;36(12):1709–1717. doi: 10.1002/art.1780361210. [DOI] [PubMed] [Google Scholar]
  10. Chothia C. Principles that determine the structure of proteins. Annu Rev Biochem. 1984;53:537–572. doi: 10.1146/annurev.bi.53.070184.002541. [DOI] [PubMed] [Google Scholar]
  11. DeClerck Y. A., Imren S. Protease inhibitors: role and potential therapeutic use in human cancer. Eur J Cancer. 1994;30A(14):2170–2180. doi: 10.1016/0959-8049(94)00460-m. [DOI] [PubMed] [Google Scholar]
  12. Gour-Salin B. J., Lachance P., Plouffe C., Storer A. C., Ménard R. Epoxysuccinyl dipeptides as selective inhibitors of cathepsin B. J Med Chem. 1993 Mar 19;36(6):720–725. doi: 10.1021/jm00058a008. [DOI] [PubMed] [Google Scholar]
  13. Hanzlik R. P., Jacober S. P., Zygmunt J. Reversible binding of peptide aldehydes to papain. Structure-activity relationships. Biochim Biophys Acta. 1991 Jan 23;1073(1):33–42. doi: 10.1016/0304-4165(91)90179-k. [DOI] [PubMed] [Google Scholar]
  14. Hanzlik R. P., Zygmunt J., Moon J. B. Reversible covalent binding of peptide nitriles to papain. Biochim Biophys Acta. 1990 Jul 20;1035(1):62–70. doi: 10.1016/0304-4165(90)90174-u. [DOI] [PubMed] [Google Scholar]
  15. Inaoka T., Bilbe G., Ishibashi O., Tezuka K., Kumegawa M., Kokubo T. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun. 1995 Jan 5;206(1):89–96. doi: 10.1006/bbrc.1995.1013. [DOI] [PubMed] [Google Scholar]
  16. Krantz A. Peptidyl (acyloxy)methanes as quiescent affinity labels for cysteine proteinases. Methods Enzymol. 1994;244:656–671. doi: 10.1016/0076-6879(94)44049-2. [DOI] [PubMed] [Google Scholar]
  17. Liu S., Hanzlik R. P. Structure-activity relationships for inhibition of papain by peptide Michael acceptors. J Med Chem. 1992 Mar 20;35(6):1067–1075. doi: 10.1021/jm00084a012. [DOI] [PubMed] [Google Scholar]
  18. Maciewicz R. A., Etherington D. J. A comparison of four cathepsins (B, L, N and S) with collagenolytic activity from rabbit spleen. Biochem J. 1988 Dec 1;256(2):433–440. doi: 10.1042/bj2560433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marks N., Berg M. J., Chi L. M., Choi J., Durrie R., Swistok J., Makofske R. C., Danho W., Sapirstein V. S. Hydrolysis of amyloid precursor protein-derived peptides by cysteine proteinases and extracts of rat brain clathrin-coated vesicles. Peptides. 1994 Jan;15(1):175–182. doi: 10.1016/0196-9781(94)90188-0. [DOI] [PubMed] [Google Scholar]
  20. Murata M., Miyashita S., Yokoo C., Tamai M., Hanada K., Hatayama K., Towatari T., Nikawa T., Katunuma N. Novel epoxysuccinyl peptides. Selective inhibitors of cathepsin B, in vitro. FEBS Lett. 1991 Mar 25;280(2):307–310. doi: 10.1016/0014-5793(91)80318-w. [DOI] [PubMed] [Google Scholar]
  21. Palmer J. T., Rasnick D., Klaus J. L., Brömme D. Vinyl sulfones as mechanism-based cysteine protease inhibitors. J Med Chem. 1995 Aug 18;38(17):3193–3196. doi: 10.1021/jm00017a002. [DOI] [PubMed] [Google Scholar]
  22. Rasnick D. Synthesis of peptide fluoromethyl ketones and the inhibition of human cathepsin B. Anal Biochem. 1985 Sep;149(2):461–465. doi: 10.1016/0003-2697(85)90598-6. [DOI] [PubMed] [Google Scholar]
  23. Shaw E., Mohanty S., Colic A., Stoka V., Turk V. The affinity-labelling of cathepsin S with peptidyl diazomethyl ketones. Comparison with the inhibition of cathepsin L and calpain. FEBS Lett. 1993 Nov 22;334(3):340–342. doi: 10.1016/0014-5793(93)80707-2. [DOI] [PubMed] [Google Scholar]
  24. Shaw E. Peptidyl diazomethanes as inhibitors of cysteine and serine proteinases. Methods Enzymol. 1994;244:649–656. doi: 10.1016/0076-6879(94)44048-4. [DOI] [PubMed] [Google Scholar]
  25. Shaw E. Peptidyl sulfonium salts. A new class of protease inhibitors. J Biol Chem. 1988 Feb 25;263(6):2768–2772. [PubMed] [Google Scholar]
  26. Shi G. P., Munger J. S., Meara J. P., Rich D. H., Chapman H. A. Molecular cloning and expression of human alveolar macrophage cathepsin S, an elastinolytic cysteine protease. J Biol Chem. 1992 Apr 15;267(11):7258–7262. [PubMed] [Google Scholar]
  27. Thomssen C., Schmitt M., Goretzki L., Oppelt P., Pache L., Dettmar P., Jänicke F., Graeff H. Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. Clin Cancer Res. 1995 Jul;1(7):741–746. [PubMed] [Google Scholar]
  28. Tian W. X., Tsou C. L. Determination of the rate constant of enzyme modification by measuring the substrate reaction in the presence of the modifier. Biochemistry. 1982 Mar 2;21(5):1028–1032. doi: 10.1021/bi00534a031. [DOI] [PubMed] [Google Scholar]
  29. Xin X. Q., Gunesekera B., Mason R. W. The specificity and elastinolytic activities of bovine cathepsins S and H. Arch Biochem Biophys. 1992 Dec;299(2):334–339. doi: 10.1016/0003-9861(92)90283-3. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES