Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 1;315(Pt 1):97–102. doi: 10.1042/bj3150097

Activation of chicken liver dihydrofolate reductase by urea and guanidine hydrochloride is accompanied by conformational change at the active site.

Y X Fan 1, M Ju 1, J M Zhou 1, C L Tsou 1
PMCID: PMC1217202  PMID: 8670138

Abstract

It has been reported that the activation of dihydrofolate reductase (DHFR) from L1210 mouse leukaemia cells by KCl or thiol modifiers is accompanied by increased digestibility by proteinases [Duffy, Beckman, Peterson, Vitols and Huennekens (1987) J. Biol. Chem. 262, 7028-7033], suggesting a loosening up of the general compact structure of the enzyme. In the present study, the peptide fragments liberated from the chicken liver enzyme by digestion with trypsin in dilute solutions of urea or guanidine hydrochloride (GuHCl) have been separated by FPLC and sequenced. The sequences obtained are unique when compared with the known sequence of DHFR and thus allow the points of proteolytic cleavage identified for the urea- and GuHCl-activated enzyme to be at or near the active site. It was also indicated by the enhanced fluorescence of 2-p-toluidinylnaphthalene 6-sulfonate that conformational changes at the active site in dilute GuHCl parallel GuHCl activation. The above results indicate that the activation of DHFR in dilute denaturants is accompanied by a loosening up of its compact structure especially at or near the active site, suggesting that the flexibility at its active site is essential for the full expression of its catalytic activity.

Full Text

The Full Text of this article is available as a PDF (440.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnone M. I., Birolo L., Giamberini M., Cubellis M. V., Nitti G., Sannia G., Marino G. Limited proteolysis as a probe of conformational changes in aspartate aminotransferase from Sulfolobus solfataricus. Eur J Biochem. 1992 Mar 15;204(3):1183–1189. doi: 10.1111/j.1432-1033.1992.tb16745.x. [DOI] [PubMed] [Google Scholar]
  2. Barbehenn E. K., Kaufman B. T. Chicken liver dihydrofolate reductase: activation and alteration of enzymatic properties as a result of reaction with methylmercury. Arch Biochem Biophys. 1982 Nov;219(1):236–247. doi: 10.1016/0003-9861(82)90154-0. [DOI] [PubMed] [Google Scholar]
  3. Betton J. M., Desmadril M., Yon J. M. Detection of intermediates in the unfolding transition of phosphoglycerate kinase using limited proteolysis. Biochemistry. 1989 Jun 27;28(13):5421–5428. doi: 10.1021/bi00439a016. [DOI] [PubMed] [Google Scholar]
  4. DAVIE E. W., NEURATH H. Identification of a peptide released during autocatalytic activation of trypsinogen. J Biol Chem. 1955 Feb;212(2):515–529. [PubMed] [Google Scholar]
  5. Dolgikh D. A., Gilmanshin R. I., Brazhnikov E. V., Bychkova V. E., Semisotnov G. V., Venyaminov SYu, Ptitsyn O. B. Alpha-Lactalbumin: compact state with fluctuating tertiary structure? FEBS Lett. 1981 Dec 28;136(2):311–315. doi: 10.1016/0014-5793(81)80642-4. [DOI] [PubMed] [Google Scholar]
  6. Duffy T. H., Beckman S. B., Peterson S. M., Vitols K. S., Huennekens F. M. L1210 dihydrofolate reductase. Kinetics and mechanism of activation by various agents. J Biol Chem. 1987 May 25;262(15):7028–7033. [PubMed] [Google Scholar]
  7. Fan Y. X., Ju M., Zhou J. M., Tsou C. L. Activation of chicken liver dihydrofolate reductase in concentrated urea solutions. Biochim Biophys Acta. 1995 Sep 27;1252(1):151–157. doi: 10.1016/0167-4838(95)00125-e. [DOI] [PubMed] [Google Scholar]
  8. Goldsmith J. O., Kuo L. C. Utilization of conformational flexibility in enzyme action-linkage between binding, isomerization, and catalysis. J Biol Chem. 1993 Sep 5;268(25):18481–18484. [PubMed] [Google Scholar]
  9. Haynie D. T., Freire E. Structural energetics of the molten globule state. Proteins. 1993 Jun;16(2):115–140. doi: 10.1002/prot.340160202. [DOI] [PubMed] [Google Scholar]
  10. Imoto T., Ueda T., Tamura T., Isakari Y., Abe Y., Inoue M., Miki T., Kawano K., Yamada H. Lysozyme requires fluctuation of the active site for the manifestation of activity. Protein Eng. 1994 Jun;7(6):743–748. doi: 10.1093/protein/7.6.743. [DOI] [PubMed] [Google Scholar]
  11. Jencks W. P. Binding energy, specificity, and enzymic catalysis: the circe effect. Adv Enzymol Relat Areas Mol Biol. 1975;43:219–410. doi: 10.1002/9780470122884.ch4. [DOI] [PubMed] [Google Scholar]
  12. Kaufman B. T., Kemerer V. F. Characterization of chicken liver dihydrofolate reductase after purification by affinity chromatography and isoelectric focusing. Arch Biochem Biophys. 1977 Mar;179(2):420–431. doi: 10.1016/0003-9861(77)90130-8. [DOI] [PubMed] [Google Scholar]
  13. Kaufman B. T. Studies on dihydrofolic reductase. 3. Activation of the chicken liver enzyme by urea and thiourea. J Biol Chem. 1968 Nov 25;243(22):6001–6008. [PubMed] [Google Scholar]
  14. Koshland D. E. Application of a Theory of Enzyme Specificity to Protein Synthesis. Proc Natl Acad Sci U S A. 1958 Feb;44(2):98–104. doi: 10.1073/pnas.44.2.98. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kuwajima K., Garvey E. P., Finn B. E., Matthews C. R., Sugai S. Transient intermediates in the folding of dihydrofolate reductase as detected by far-ultraviolet circular dichroism spectroscopy. Biochemistry. 1991 Aug 6;30(31):7693–7703. doi: 10.1021/bi00245a005. [DOI] [PubMed] [Google Scholar]
  16. Kuwajima K. The molten globule state as a clue for understanding the folding and cooperativity of globular-protein structure. Proteins. 1989;6(2):87–103. doi: 10.1002/prot.340060202. [DOI] [PubMed] [Google Scholar]
  17. Liu W., Tsou C. L. Determination of rate constants for the irreversible inhibition of acetylcholine esterase by continuously monitoring the substrate reaction in the presence of the inhibitor. Biochim Biophys Acta. 1986 Mar 28;870(2):185–190. doi: 10.1016/0167-4838(86)90220-7. [DOI] [PubMed] [Google Scholar]
  18. Ma Y. Z., Tsou C. L. Comparison of the activity and conformation changes of lactate dehydrogenase H4 during denaturation by guanidinium chloride. Biochem J. 1991 Jul 1;277(Pt 1):207–211. doi: 10.1042/bj2770207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marangos P. J., Constantinides S. M. Factors affecting the folding and association of flounder muscle glyceraldehyde-3-phosphate dehydrogenase, in vitro. Biochemistry. 1974 Feb 26;13(5):904–910. doi: 10.1021/bi00702a012. [DOI] [PubMed] [Google Scholar]
  20. Martin J., Langer T., Boteva R., Schramel A., Horwich A. L., Hartl F. U. Chaperonin-mediated protein folding at the surface of groEL through a 'molten globule'-like intermediate. Nature. 1991 Jul 4;352(6330):36–42. doi: 10.1038/352036a0. [DOI] [PubMed] [Google Scholar]
  21. Mast A. E., Enghild J. J., Salvesen G. Conformation of the reactive site loop of alpha 1-proteinase inhibitor probed by limited proteolysis. Biochemistry. 1992 Mar 17;31(10):2720–2728. doi: 10.1021/bi00125a012. [DOI] [PubMed] [Google Scholar]
  22. Reyes P., Huennekens F. M. Ion-dependent activation of dihydrofolate reductase from L1210 cells. Biochemistry. 1967 Nov;6(11):3519–3527. doi: 10.1021/bi00863a025. [DOI] [PubMed] [Google Scholar]
  23. Touchette N. A., Perry K. M., Matthews C. R. Folding of dihydrofolate reductase from Escherichia coli. Biochemistry. 1986 Sep 23;25(19):5445–5452. doi: 10.1021/bi00367a015. [DOI] [PubMed] [Google Scholar]
  24. Tsou C. L. Conformational flexibility of enzyme active sites. Science. 1993 Oct 15;262(5132):380–381. doi: 10.1126/science.8211158. [DOI] [PubMed] [Google Scholar]
  25. Uversky V. N., Semisotnov G. V., Pain R. H., Ptitsyn O. B. 'All-or-none' mechanism of the molten globule unfolding. FEBS Lett. 1992 Dec 7;314(1):89–92. doi: 10.1016/0014-5793(92)81468-2. [DOI] [PubMed] [Google Scholar]
  26. Volz K. W., Matthews D. A., Alden R. A., Freer S. T., Hansch C., Kaufman B. T., Kraut J. Crystal structure of avian dihydrofolate reductase containing phenyltriazine and NADPH. J Biol Chem. 1982 Mar 10;257(5):2528–2536. [PubMed] [Google Scholar]
  27. Wilson J. E. The use of monoclonal antibodies and limited proteolysis in elucidation of structure-function relationships in proteins. Methods Biochem Anal. 1991;35:207–250. doi: 10.1002/9780470110560.ch4. [DOI] [PubMed] [Google Scholar]
  28. Yang H. J., Tsou C. L. Inactivation during denaturation of ribonuclease A by guanidinium chloride is accompanied by unfolding at the active site. Biochem J. 1995 Jan 15;305(Pt 2):379–384. doi: 10.1042/bj3050379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Yao Q. Z., Tian M., Tsou C. L. Comparison of the rates of inactivation and conformational changes of creatine kinase during urea denaturation. Biochemistry. 1984 Jun 5;23(12):2740–2744. doi: 10.1021/bi00307a032. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES