Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Apr 15;315(Pt 2):393–399. doi: 10.1042/bj3150393

The purification and some properties of the Mg(2+)-activated cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae.

F M Dickinson 1
PMCID: PMC1217208  PMID: 8615805

Abstract

A purification procedure has been developed for the cytosolic aldehyde dehydrogenase of Saccharomyces cerevisiae that yields homogeneous enzyme. The enzyme seems to be a tetramer of identical 58 kDa subunits. The enzyme reaction is strongly stimulated by Mg2+ at low NADP+ concentrations but there is no absolute requirement for bivalent cations. The kinetics of the reaction have been studied in the presence and absence of MgCl2. NADP+ binding studies of the quenching of protein fluorescence in the presence and absence of MgCl2 show that the effect of Mg2+ is to increase the affinity of the enzyme for NADP+ by approx. 100-fold. NADP+ binding causes a slow conformational change in the enzyme and converts the enzyme from the inactive or low-activity form in which it is isolated into the fully active form. This conformational change seems to explain the marked lag-phases seen in enzyme assays. The enzyme is strongly inhibited by disulfiram and pyridoxal 5-phosphate.

Full Text

The Full Text of this article is available as a PDF (564.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allanson S., Dickinson F. M. The removal of cytosolic-type aldehyde dehydrogenase from preparations of sheep liver mitochondrial aldehyde dehydrogenase and the unusual properties of the purified mitochondrial enzyme in assays. Biochem J. 1984 Nov 15;224(1):163–169. doi: 10.1042/bj2240163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Apps D. K. Complex formation between magnesium ions and pyridine nucleotide coenzymes. Biochim Biophys Acta. 1973 Sep 14;320(2):379–387. doi: 10.1016/0304-4165(73)90319-x. [DOI] [PubMed] [Google Scholar]
  3. Bennett A. F., Buckley P. D., Blackwell L. F. Inhibition of the dehydrogenase activity of sheep liver cytoplasmic aldehyde dehydrogenase by magnesium ions. Biochemistry. 1983 Feb 15;22(4):776–784. doi: 10.1021/bi00273a011. [DOI] [PubMed] [Google Scholar]
  4. Bostian K. A., Betts G. F. Rapid purification and properties of potassium-activated aldehyde dehydrogenase from Saccharomyces cerevisiae. Biochem J. 1978 Sep 1;173(3):773–786. doi: 10.1042/bj1730773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  6. Chen S. S., Engel P. C. Horse liver alcohol dehydrogenase. A study of the essential lysine residue. Biochem J. 1975 Sep;149(3):627–635. doi: 10.1042/bj1490627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chen S. S., Engel P. C. Modification of pig M4 lactate dehydrogenase by pyridoxal 5'-phosphate. Demonstration of an essential lysine residue. Biochem J. 1975 Jul;149(1):107–113. doi: 10.1042/bj1490107. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chen S. S., Engel P. C. The equilibrium position of the reaction of bovine liver glutamate dehydrogenase with pyridoxal5'-phosphate. A demonstration that covalent modification with this reagent completely abolishes catalytic activity. Biochem J. 1975 May;147(2):351–358. doi: 10.1042/bj1470351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DALZIEL K. Kinetic studies of liver alcohol dehydrogenase. Biochem J. 1962 Aug;84:244–254. doi: 10.1042/bj0840244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Dalziel K., McFerran N., Matthews B., Reynolds C. H. Transient kinetics of nicotinamide-adenine dinucleotide phosphate-linked isocitrate dehydrogenase from bovine heart mitochondria. Biochem J. 1978 Jun 1;171(3):743–750. doi: 10.1042/bj1710743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Dickinson F. M., Hart G. J. Effects of Mg2+, Ca2+ and Mn2+ on sheep liver cytoplasmic aldehyde dehydrogenase. Biochem J. 1982 Aug 1;205(2):443–448. doi: 10.1042/bj2050443. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Dickinson F. M., Hart G. J., Kitson T. M. The use of pH-gradient ion-exchange chromatography to separate sheep liver cytoplasmic aldehyde dehydrogenase from mitochondrial enzyme contamination, and observations on the interaction between the pure cytoplasmic enzyme and disulfiram. Biochem J. 1981 Dec 1;199(3):573–579. doi: 10.1042/bj1990573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Dickinson F. M., Haywood G. W. The effects of Mg2+ on certain steps in the mechanisms of the dehydrogenase and esterase reactions catalysed by sheep liver aldehyde dehydrogenase. Support for the view that dehydrogenase and esterase activities occur at the same site on the enzyme. Biochem J. 1986 Feb 1;233(3):877–883. doi: 10.1042/bj2330877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dickinson F. M., Haywood G. W. The role of the metal ion in the mechanism of the K+-activated aldehyde dehydrogenase of Saccharomyces cerevisiae. Biochem J. 1987 Oct 15;247(2):377–384. doi: 10.1042/bj2470377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hart G. J., Dickinson F. M. Kinetic properties of aldehyde dehydrogenase from sheep liver mitochondria. Biochem J. 1978 Dec 1;175(3):899–908. doi: 10.1042/bj1750899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hart G. J., Dickinson F. M. The coenzyme-binding characteristics of highly purified preparations of sheep liver cytoplasmic aldehyde dehydrogenase. Biochem J. 1983 May 1;211(2):363–371. doi: 10.1042/bj2110363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Jacobson M. K., Bernofsky C. Mitochondrial acetaldehyde dehydrogenase from Saccharomyces cerevisiae. Biochim Biophys Acta. 1974 Jun 18;350(2):277–291. doi: 10.1016/0005-2744(74)90502-6. [DOI] [PubMed] [Google Scholar]
  18. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  19. Llorente N., de Castro I. N. Physiological role of yeasts NAD(P)+ and NADP+-linked aldehyde dehydrogenases. Rev Esp Fisiol. 1977 Jun;33(2):135–142. [PubMed] [Google Scholar]
  20. SEEGMILLER J. E. Triphosphopyridine nucleotide-linked aldehyde dehydrogenase from yeast. J Biol Chem. 1953 Apr;201(2):629–637. [PubMed] [Google Scholar]
  21. Steinman C. R., Jakoby W. B. Yeast aldehyde dehydrogenase. I. Purification and crystallization. J Biol Chem. 1967 Nov 10;242(21):5019–5023. [PubMed] [Google Scholar]
  22. Stinson R. A., Holbrook J. J. Equilibrium binding of nicotinamide nucleotides to lactate dehydrogenases. Biochem J. 1973 Apr;131(4):719–728. doi: 10.1042/bj1310719. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES