Abstract
To determine the first steps involved in the mechanism of action of aldosterone and its antagonists, we analysed the ligand-induced structural changes of the human mineralocorticoid receptor (hMR) translated in vitro. Limited chymotrypsin digestion of the receptor generated a 30 kDa fragment. Following binding of a ligand to hMR, the 30 kDa fragment became resistant to chymotrypsin proteolysis, indicating a change in the receptor conformation. Differences in sensitivity to chymotrypsin of the 30 kDa fragment were observed after binding of agonists and antagonists to hMR, suggesting that these two classes of ligands induced different hMR conformations. Several lines of evidence allowed us to identify the 30 kDa fragment as the subregion encompassing the C-terminal part of the hinge region and the ligand-binding domain (LBD) or hMR (hMR 711-984). (1) The 30 kDa fragment is not recognized by FD4, an antibody directed against the N-terminal region of hMR. (2) Aldosterone remains associated with the 30 kDa fragment after chymotrypsin proteolysis of the aldosterone-hMR complex. (3) A truncated hMR, lacking the last 40 C-terminal amino acids (hMR 1-944), yields a 26 kDa proteolytic fragment. In addition, we showed that the unbound and the aldosterone-bound 30 kDa fragment were both associated with heat-shock protein (hsp) 90, indicating that the ligand-induced conformational change takes place within the hetero-oligomeric structure and that the 711-984 region is sufficient for hsp90-MR interaction. We conclude that the ligand-induced conformational change of the receptor is a crucial step in mineralocorticoid action. It occurs within the LBD, precedes the release of hsp90 from the receptor and is dependent upon the agonist/antagonist nature of the ligand.
Full Text
The Full Text of this article is available as a PDF (503.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allan G. F., Leng X., Tsai S. Y., Weigel N. L., Edwards D. P., Tsai M. J., O'Malley B. W. Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation. J Biol Chem. 1992 Sep 25;267(27):19513–19520. [PubMed] [Google Scholar]
- Alnemri E. S., Maksymowych A. B., Robertson N. M., Litwack G. Overexpression and characterization of the human mineralocorticoid receptor. J Biol Chem. 1991 Sep 25;266(27):18072–18081. [PubMed] [Google Scholar]
- Arriza J. L., Weinberger C., Cerelli G., Glaser T. M., Handelin B. L., Housman D. E., Evans R. M. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science. 1987 Jul 17;237(4812):268–275. doi: 10.1126/science.3037703. [DOI] [PubMed] [Google Scholar]
- Beekman J. M., Allan G. F., Tsai S. Y., Tsai M. J., O'Malley B. W. Transcriptional activation by the estrogen receptor requires a conformational change in the ligand binding domain. Mol Endocrinol. 1993 Oct;7(10):1266–1274. doi: 10.1210/mend.7.10.8264659. [DOI] [PubMed] [Google Scholar]
- Bhat M. K., Parkison C., McPhie P., Liang C. M., Cheng S. Y. Conformational changes of human beta 1 thyroid hormone receptor induced by binding of 3,3',5-triiodo-L-thyronine. Biochem Biophys Res Commun. 1993 Aug 31;195(1):385–392. doi: 10.1006/bbrc.1993.2055. [DOI] [PubMed] [Google Scholar]
- Binart N., Lombes M., Rafestin-Oblin M. E., Baulieu E. E. Characterization of human mineralocorticosteroid receptor expressed in the baculovirus system. Proc Natl Acad Sci U S A. 1991 Dec 1;88(23):10681–10685. doi: 10.1073/pnas.88.23.10681. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Bresnick E. H., Dalman F. C., Sanchez E. R., Pratt W. B. Evidence that the 90-kDa heat shock protein is necessary for the steroid binding conformation of the L cell glucocorticoid receptor. J Biol Chem. 1989 Mar 25;264(9):4992–4997. [PubMed] [Google Scholar]
- Caamaño C. A., Morano M. I., Patel P. D., Watson S. J., Akil H. A bacterially expressed mineralocorticoid receptor is associated in vitro with the 90-kilodalton heat shock protein and shows typical hormone- and DNA-binding characteristics. Biochemistry. 1993 Aug 24;32(33):8589–8595. doi: 10.1021/bi00084a028. [DOI] [PubMed] [Google Scholar]
- Cadepond F., Binart N., Chambraud B., Jibard N., Schweizer-Groyer G., Segard-Maurel I., Baulieu E. E. Interaction of glucocorticosteroid receptor and wild-type or mutated 90-kDa heat shock protein coexpressed in baculovirus-infected Sf9 cells. Proc Natl Acad Sci U S A. 1993 Nov 15;90(22):10434–10438. doi: 10.1073/pnas.90.22.10434. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Claire M., Rafestin-Oblin M. E., Michaud A., Corvol P., Venot A., Roth-Meyer C., Boisvieux J. F., Mallet A. Statistical test of models and computerised parameter estimation for aldosterone binding in rat kidney. FEBS Lett. 1978 Apr 15;88(2):295–299. doi: 10.1016/0014-5793(78)80197-5. [DOI] [PubMed] [Google Scholar]
- Corvol P., Claire M., Oblin M. E., Geering K., Rossier B. Mechanism of the antimineralocorticoid effects of spirolactones. Kidney Int. 1981 Jul;20(1):1–6. doi: 10.1038/ki.1981.97. [DOI] [PubMed] [Google Scholar]
- Couette B., Lombes M., Baulieu E. E., Rafestin-Oblin M. E. Aldosterone antagonists destabilize the mineralocorticosteroid receptor. Biochem J. 1992 Mar 15;282(Pt 3):697–702. doi: 10.1042/bj2820697. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eisen L. P., Harmon J. M. Activation of the rat kidney mineralocorticoid receptor. Endocrinology. 1986 Oct;119(4):1419–1426. doi: 10.1210/endo-119-4-1419. [DOI] [PubMed] [Google Scholar]
- Fritsch M., Anderson I., Gorski J. Structural characterization of the trypsinized estrogen receptor. Biochemistry. 1993 Dec 21;32(50):14000–14008. doi: 10.1021/bi00213a033. [DOI] [PubMed] [Google Scholar]
- Fritsch M., Leary C. M., Furlow J. D., Ahrens H., Schuh T. J., Mueller G. C., Gorski J. A ligand-induced conformational change in the estrogen receptor is localized in the steroid binding domain. Biochemistry. 1992 Jun 16;31(23):5303–5311. doi: 10.1021/bi00138a009. [DOI] [PubMed] [Google Scholar]
- Groyer A., Schweizer-Groyer G., Cadepond F., Mariller M., Baulieu E. E. Antiglucocorticosteroid effects suggest why steroid hormone is required for receptors to bind DNA in vivo but not in vitro. Nature. 1987 Aug 13;328(6131):624–626. doi: 10.1038/328624a0. [DOI] [PubMed] [Google Scholar]
- Hutchison K. A., Dittmar K. D., Pratt W. B. All of the factors required for assembly of the glucocorticoid receptor into a functional heterocomplex with heat shock protein 90 are preassociated in a self-sufficient protein folding structure, a "foldosome". J Biol Chem. 1994 Nov 11;269(45):27894–27899. [PubMed] [Google Scholar]
- Kallio P. J., Jänne O. A., Palvimo J. J. Agonists, but not antagonists, alter the conformation of the hormone-binding domain of androgen receptor. Endocrinology. 1994 Feb;134(2):998–1001. doi: 10.1210/endo.134.2.8299593. [DOI] [PubMed] [Google Scholar]
- Keidel S., LeMotte P., Apfel C. Different agonist- and antagonist-induced conformational changes in retinoic acid receptors analyzed by protease mapping. Mol Cell Biol. 1994 Jan;14(1):287–298. doi: 10.1128/mcb.14.1.287. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Leid M. Ligand-induced alteration of the protease sensitivity of retinoid X receptor alpha. J Biol Chem. 1994 May 13;269(19):14175–14181. [PubMed] [Google Scholar]
- Lombès M., Binart N., Delahaye F., Baulieu E. E., Rafestin-Oblin M. E. Differential intracellular localization of human mineralocorticosteroid receptor on binding of agonists and antagonists. Biochem J. 1994 Aug 15;302(Pt 1):191–197. doi: 10.1042/bj3020191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lombès M., Binart N., Oblin M. E., Joulin V., Baulieu E. E. Characterization of the interaction of the human mineralocorticosteroid receptor with hormone response elements. Biochem J. 1993 Jun 1;292(Pt 2):577–583. doi: 10.1042/bj2920577. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nemoto T., Ohara-Nemoto Y., Sato N., Ota M. Dual roles of 90-kDa heat shock protein in the function of the mineralocorticoid receptor. J Biochem. 1993 Jun;113(6):769–775. [PubMed] [Google Scholar]
- Radanyi C., Lombès M., Renoir J. M., Delahaye F., Baulieu E. E. A novel monoclonal anti-rabbit hsp90 antibody: usefulness for studies on hsp90-steroid receptor interaction. J Steroid Biochem Mol Biol. 1992 Sep;42(8):863–874. doi: 10.1016/0960-0760(92)90095-z. [DOI] [PubMed] [Google Scholar]
- Rafestin-Oblin M. E., Couette B., Radanyi C., Lombes M., Baulieu E. E. Mineralocorticosteroid receptor of the chick intestine. Oligomeric structure and transformation. J Biol Chem. 1989 Jun 5;264(16):9304–9309. [PubMed] [Google Scholar]
- Rafestin-Oblin M. E., Lombes M., Couette B., Baulieu E. E. Differences between aldosterone and its antagonists in binding kinetics and ligand-induced hsp90 release from mineralocorticosteroid receptor. J Steroid Biochem Mol Biol. 1992 Mar;41(3-8):815–821. doi: 10.1016/0960-0760(92)90430-q. [DOI] [PubMed] [Google Scholar]
- Rafestin-Oblin M. E., Lombes M., Michiel J. B., Michaud A., Claire M. Mineralocorticoid receptors in the epithelial cells of human colon and ileum. J Steroid Biochem. 1984 Jan;20(1):311–315. doi: 10.1016/0022-4731(84)90223-1. [DOI] [PubMed] [Google Scholar]
- Robertson N. M., Schulman G., Karnik S., Alnemri E., Litwack G. Demonstration of nuclear translocation of the mineralocorticoid receptor (MR) using an anti-MR antibody and confocal laser scanning microscopy. Mol Endocrinol. 1993 Sep;7(9):1226–1239. doi: 10.1210/mend.7.9.8247024. [DOI] [PubMed] [Google Scholar]
- Rupprecht R., Reul J. M., van Steensel B., Spengler D., Söder M., Berning B., Holsboer F., Damm K. Pharmacological and functional characterization of human mineralocorticoid and glucocorticoid receptor ligands. Eur J Pharmacol. 1993 Oct 15;247(2):145–154. doi: 10.1016/0922-4106(93)90072-h. [DOI] [PubMed] [Google Scholar]
- Schulman G., Daniel V., Cooper M., Alnemri E. S., Maksymowych A. B., Litwack G. Characterization of in vitro translated human mineralocorticoid receptor. Structure and activation. Receptor. 1992 Fall;2(3):181–194. [PubMed] [Google Scholar]
- Schulman G., Miller-Diener A., Litwack G., Bastl C. P. Characterization of the rat colonic aldosterone receptor and its activation process. J Biol Chem. 1986 Sep 15;261(26):12102–12108. [PubMed] [Google Scholar]
- Simons S. S., Jr, Sistare F. D., Chakraborti P. K. Steroid binding activity is retained in a 16-kDa fragment of the steroid binding domain of rat glucocorticoid receptors. J Biol Chem. 1989 Aug 25;264(24):14493–14497. [PubMed] [Google Scholar]
- Smith D. F. Dynamics of heat shock protein 90-progesterone receptor binding and the disactivation loop model for steroid receptor complexes. Mol Endocrinol. 1993 Nov;7(11):1418–1429. doi: 10.1210/mend.7.11.7906860. [DOI] [PubMed] [Google Scholar]
- Sullivan W. P., Toft D. O. Mutational analysis of hsp90 binding to the progesterone receptor. J Biol Chem. 1993 Sep 25;268(27):20373–20379. [PubMed] [Google Scholar]
- Tan S., Richmond T. J. DNA binding-induced conformational change of the yeast transcriptional activator PRTF. Cell. 1990 Jul 27;62(2):367–377. doi: 10.1016/0092-8674(90)90373-m. [DOI] [PubMed] [Google Scholar]
- Toney J. H., Wu L., Summerfield A. E., Sanyal G., Forman B. M., Zhu J., Samuels H. H. Conformational changes in chicken thyroid hormone receptor alpha 1 induced by binding to ligand or to DNA. Biochemistry. 1993 Jan 12;32(1):2–6. doi: 10.1021/bi00052a001. [DOI] [PubMed] [Google Scholar]
- Traish A. M., Netsuwan N. 7 alpha-17 alpha-Dimethyl-19-nortestosterone (mibolerone) induces conformational changes in progesterone receptors distinct from those induced by ORG 2058. Steroids. 1994 Jun;59(6):362–370. doi: 10.1016/0039-128x(94)90003-5. [DOI] [PubMed] [Google Scholar]
- Tsai M. J., O'Malley B. W. Molecular mechanisms of action of steroid/thyroid receptor superfamily members. Annu Rev Biochem. 1994;63:451–486. doi: 10.1146/annurev.bi.63.070194.002315. [DOI] [PubMed] [Google Scholar]
- Ulmann A., Bertagna C., Le Go A., Husson J. M., Tache A., Sassano P., Menard J., Corvol P. Assessment of the antimineralocorticoid effect of RU 28318 in healthy men with induced exogenous and endogenous hypermineralocorticism. Eur J Clin Pharmacol. 1985;28(5):531–535. doi: 10.1007/BF00544063. [DOI] [PubMed] [Google Scholar]
- Vegeto E., Allan G. F., Schrader W. T., Tsai M. J., McDonnell D. P., O'Malley B. W. The mechanism of RU486 antagonism is dependent on the conformation of the carboxy-terminal tail of the human progesterone receptor. Cell. 1992 May 15;69(4):703–713. doi: 10.1016/0092-8674(92)90234-4. [DOI] [PubMed] [Google Scholar]
- Weigel N. L., Beck C. A., Estes P. A., Prendergast P., Altmann M., Christensen K., Edwards D. P. Ligands induce conformational changes in the carboxyl-terminus of progesterone receptors which are detected by a site-directed antipeptide monoclonal antibody. Mol Endocrinol. 1992 Oct;6(10):1585–1597. doi: 10.1210/mend.6.10.1448113. [DOI] [PubMed] [Google Scholar]
- Weisshart K., Kuo A. A., Painter G. R., Wright L. L., Furman P. A., Coen D. M. Conformational changes induced in herpes simplex virus DNA polymerase upon DNA binding. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):1028–1032. doi: 10.1073/pnas.90.3.1028. [DOI] [PMC free article] [PubMed] [Google Scholar]