Abstract
Activated fibroblasts were derived from the skin of patients with systemic scleroderma (SSc), used as a model for fibrosis. Such cells are characterized by increased production of collagens and other matrix constituents. Increased collagen and fibronectin production has been correlated with similarly elevated mRNA steady-state levels. In the present study we analysed the contribution of transcriptional activity and post-transcriptional transcript stability to the increases in pro-alpha 1(I) collagen and fibronectin mRNA steady-state levels in activated (scleroderma) fibroblasts. Fibroblasts, when cultured in close contact with a three-dimensional collagenous matrix, down-regulate collagen synthesis. Culture of skin fibroblasts from two patients with SSc in three-dimensional collagen lattices, however, showed 4-fold elevated pro-alpha 1(I) collagen mRNA levels over fibroblasts from healthy donors. Transcription of the COL1A1 gene in SSc fibroblasts was induced 2-3-fold over that in controls in both monolayer and lattice cultures, accounting in part for the elevated steady-state level. A 50% decrease in transcription rate in lattice compared with monolayer culture occurred, as in control cells. In contrast, whereas control cells in lattices responded with decreased (50%) pro-alpha 1(I) collagen mRNA stability, in SSc cells these transcripts were found to be more stable (half-life of 5 h compared with 2 h in control cells). Fibronectin steady-state mRNA levels, in contrast, were not significantly regulated by the three-dimensional environment. In SSc fibroblasts, fibronectin mRNA levels were induced 1.5-4.9-fold over controls. In part, this increase appears to be due to elevated transcription, and an increase in fibronectin transcript stability was also detected. We therefore conclude that activated fibroblasts such as those derived from scleroderma patients utilize transcriptional and posttranscriptional mechanisms to maintain increased collagen and fibronectin production, which contribute to the pathogenesis of the disease.
Full Text
The Full Text of this article is available as a PDF (352.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bernard M. P., Kolbe M., Weil D., Chu M. L. Human cellular fibronectin: comparison of the carboxyl-terminal portion with rat identifies primary structural domains separated by hypervariable regions. Biochemistry. 1985 May 21;24(11):2698–2704. doi: 10.1021/bi00332a016. [DOI] [PubMed] [Google Scholar]
- Bornstein P., McKay J., Morishima J. K., Devarayalu S., Gelinas R. E. Regulatory elements in the first intron contribute to transcriptional control of the human alpha 1(I) collagen gene. Proc Natl Acad Sci U S A. 1987 Dec;84(24):8869–8873. doi: 10.1073/pnas.84.24.8869. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Botstein G. R., Sherer G. K., Leroy E. C. Fibroblast selection in scleroderma. An alternative model of fibrosis. Arthritis Rheum. 1982 Feb;25(2):189–195. doi: 10.1002/art.1780250212. [DOI] [PubMed] [Google Scholar]
- Buckingham R. B., Prince R. K., Rodnan G. P. Progressive systemic sclerosis (PSS, scleroderma) dermal fibroblasts synthesize increased amounts of glycosaminoglycan. J Lab Clin Med. 1983 May;101(5):659–669. [PubMed] [Google Scholar]
- Chandler L. A., Bourgeois S. Posttranscriptional down-regulation of fibronectin in N-ras-transformed cells. Cell Growth Differ. 1991 Aug;2(8):379–384. [PubMed] [Google Scholar]
- Chandler L. A., Ehretsmann C. P., Bourgeois S. A novel mechanism of Ha-ras oncogene action: regulation of fibronectin mRNA levels by a nuclear posttranscriptional event. Mol Cell Biol. 1994 May;14(5):3085–3093. doi: 10.1128/mcb.14.5.3085. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chu M. L., Myers J. C., Bernard M. P., Ding J. F., Ramirez F. Cloning and characterization of five overlapping cDNAs specific for the human pro alpha 1(I) collagen chain. Nucleic Acids Res. 1982 Oct 11;10(19):5925–5934. doi: 10.1093/nar/10.19.5925. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dean D. C., McQuillan J. J., Weintraub S. Serum stimulation of fibronectin gene expression appears to result from rapid serum-induced binding of nuclear proteins to a cAMP response element. J Biol Chem. 1990 Feb 25;265(6):3522–3527. [PubMed] [Google Scholar]
- Dean D. C., Newby R. F., Bourgeois S. Regulation of fibronectin biosynthesis by dexamethasone, transforming growth factor beta, and cAMP in human cell lines. J Cell Biol. 1988 Jun;106(6):2159–2170. doi: 10.1083/jcb.106.6.2159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eckes B., Mauch C., Hüppe G., Krieg T. Downregulation of collagen synthesis in fibroblasts within three-dimensional collagen lattices involves transcriptional and posttranscriptional mechanisms. FEBS Lett. 1993 Mar 1;318(2):129–133. doi: 10.1016/0014-5793(93)80006-g. [DOI] [PubMed] [Google Scholar]
- Feinberg A. P., Vogelstein B. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem. 1983 Jul 1;132(1):6–13. doi: 10.1016/0003-2697(83)90418-9. [DOI] [PubMed] [Google Scholar]
- Ffrench-Constant C., Van de Water L., Dvorak H. F., Hynes R. O. Reappearance of an embryonic pattern of fibronectin splicing during wound healing in the adult rat. J Cell Biol. 1989 Aug;109(2):903–914. doi: 10.1083/jcb.109.2.903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischmajer R., Perlish J. S., Krieg T., Timpl R. Variability in collagen and fibronectin synthesis by scleroderma fibroblasts in primary culture. J Invest Dermatol. 1981 May;76(5):400–403. doi: 10.1111/1523-1747.ep12520933. [DOI] [PubMed] [Google Scholar]
- Fries K. M., Blieden T., Looney R. J., Sempowski G. D., Silvera M. R., Willis R. A., Phipps R. P. Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol. 1994 Sep;72(3):283–292. doi: 10.1006/clin.1994.1144. [DOI] [PubMed] [Google Scholar]
- Gillery P., Serpier H., Polette M., Bellon G., Clavel C., Wegrowski Y., Birembaut P., Kalis B., Cariou R., Maquart F. X. Gamma-interferon inhibits extracellular matrix synthesis and remodeling in collagen lattice cultures of normal and scleroderma skin fibroblasts. Eur J Cell Biol. 1992 Apr;57(2):244–253. [PubMed] [Google Scholar]
- Graves P. N., Weiss I. K., Perlish J. S., Fleischmajer R. Increased procollagen mRNA levels in scleroderma skin fibroblasts. J Invest Dermatol. 1983 Feb;80(2):130–132. doi: 10.1111/1523-1747.ep12532908. [DOI] [PubMed] [Google Scholar]
- Hämäläinen L., Oikarinen J., Kivirikko K. I. Synthesis and degradation of type I procollagen mRNAs in cultured human skin fibroblasts and the effect of cortisol. J Biol Chem. 1985 Jan 25;260(2):720–725. [PubMed] [Google Scholar]
- Ivarsson M., McWhirter A., Black C. M., Rubin K. Impaired regulation of collagen pro-alpha 1(I) mRNA and change in pattern of collagen-binding integrins on scleroderma fibroblasts. J Invest Dermatol. 1993 Aug;101(2):216–221. doi: 10.1111/1523-1747.ep12364810. [DOI] [PubMed] [Google Scholar]
- Jimenez S. A., Feldman G., Bashey R. I., Bienkowski R., Rosenbloom J. Co-ordinate increase in the expression of type I and type III collagen genes in progressive systemic sclerosis fibroblasts. Biochem J. 1986 Aug 1;237(3):837–843. doi: 10.1042/bj2370837. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jimenez S. A., Varga J., Olsen A., Li L., Diaz A., Herhal J., Koch J. Functional analysis of human alpha 1(I) procollagen gene promoter. Differential activity in collagen-producing and -nonproducing cells and response to transforming growth factor beta 1. J Biol Chem. 1994 Apr 29;269(17):12684–12691. [PubMed] [Google Scholar]
- Karsenty G., Ravazzolo R., de Crombrugghe B. Purification and functional characterization of a DNA-binding protein that interacts with a negative element in the mouse alpha 1(I) collagen promoter. J Biol Chem. 1991 Dec 25;266(36):24842–24848. [PubMed] [Google Scholar]
- Kikuchi K., Hartl C. W., Smith E. A., LeRoy E. C., Trojanowska M. Direct demonstration of transcriptional activation of collagen gene expression in systemic sclerosis fibroblasts: insensitivity to TGF beta 1 stimulation. Biochem Biophys Res Commun. 1992 Aug 31;187(1):45–50. doi: 10.1016/s0006-291x(05)81456-1. [DOI] [PubMed] [Google Scholar]
- Kinsella M. B., Smith E. A., Miller K. S., LeRoy E. C., Silver R. M. Spontaneous production of fibronectin by alveolar macrophages in patients with scleroderma. Arthritis Rheum. 1989 May;32(5):577–583. doi: 10.1002/anr.1780320511. [DOI] [PubMed] [Google Scholar]
- Klareskog L., Gustafsson R., Scheynius A., Hällgren R. Increased expression of platelet-derived growth factor type B receptors in the skin of patients with systemic sclerosis. Arthritis Rheum. 1990 Oct;33(10):1534–1541. doi: 10.1002/art.1780331011. [DOI] [PubMed] [Google Scholar]
- Kornblihtt A. R., Vibe-Pedersen K., Baralle F. E. Human fibronectin: cell specific alternative mRNA splicing generates polypeptide chains differing in the number of internal repeats. Nucleic Acids Res. 1984 Jul 25;12(14):5853–5868. doi: 10.1093/nar/12.14.5853. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krieg T., Langer I., Gerstmeier H., Keller J., Mensing H., Goerz G., Timpl R. Type III collagen aminopropeptide levels in serum of patients with progressive systemic scleroderma. J Invest Dermatol. 1986 Dec;87(6):788–791. doi: 10.1111/1523-1747.ep12459865. [DOI] [PubMed] [Google Scholar]
- Krieg T., Perlish J. S., Fleischmajer R., Braun-Falco O. Collagen synthesis in scleroderma: selection of fibroblast populations during subcultures. Arch Dermatol Res. 1985;277(5):373–376. doi: 10.1007/BF00509236. [DOI] [PubMed] [Google Scholar]
- Kulozik M., Hogg A., Lankat-Buttgereit B., Krieg T. Co-localization of transforming growth factor beta 2 with alpha 1(I) procollagen mRNA in tissue sections of patients with systemic sclerosis. J Clin Invest. 1990 Sep;86(3):917–922. doi: 10.1172/JCI114793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kähäri V. M., Heino J., Niskanen L., Fräki J., Uitto J. Eosinophilic fasciitis. Increased collagen production and type I procollagen messenger RNA levels in fibroblasts cultured from involved skin. Arch Dermatol. 1990 May;126(5):613–617. [PubMed] [Google Scholar]
- Kähäri V. M., Multimäki P., Vuorio E. Elevated pro alpha 2(I) collagen mRNA levels in cultured scleroderma fibroblasts result from an increased transcription rate of the corresponding gene. FEBS Lett. 1987 May 11;215(2):331–334. doi: 10.1016/0014-5793(87)80172-2. [DOI] [PubMed] [Google Scholar]
- LeRoy E. C. A brief overview of the pathogenesis of scleroderma (systemic sclerosis). Ann Rheum Dis. 1992 Feb;51(2):286–288. doi: 10.1136/ard.51.2.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LeRoy E. C. Increased collagen synthesis by scleroderma skin fibroblasts in vitro: a possible defect in the regulation or activation of the scleroderma fibroblast. J Clin Invest. 1974 Oct;54(4):880–889. doi: 10.1172/JCI107827. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mauch C., Hatamochi A., Scharffetter K., Krieg T. Regulation of collagen synthesis in fibroblasts within a three-dimensional collagen gel. Exp Cell Res. 1988 Oct;178(2):493–503. doi: 10.1016/0014-4827(88)90417-x. [DOI] [PubMed] [Google Scholar]
- Mauch C., Kozlowska E., Eckes B., Krieg T. Altered regulation of collagen metabolism in scleroderma fibroblasts grown within three-dimensional collagen gels. Exp Dermatol. 1992 Nov;1(4):185–190. doi: 10.1111/j.1600-0625.1992.tb00187.x. [DOI] [PubMed] [Google Scholar]
- Mättä A., Bornstein P., Penttinen R. P. Highly conserved sequences in the 3'-untranslated region of the COL1A1 gene bind cell-specific nuclear proteins. FEBS Lett. 1991 Feb 11;279(1):9–13. doi: 10.1016/0014-5793(91)80237-w. [DOI] [PubMed] [Google Scholar]
- Mättä A., Penttinen R. P. A fibroblast protein binds the 3'-untranslated region of pro-alpha 1(I) collagen mRNA. Biochem J. 1993 Nov 1;295(Pt 3):691–698. doi: 10.1042/bj2950691. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mättä A., Penttinen R. P. Nuclear and cytoplasmic alpha 1 (I) collagen mRNA-binding proteins. FEBS Lett. 1994 Feb 28;340(1-2):71–77. doi: 10.1016/0014-5793(94)80175-4. [DOI] [PubMed] [Google Scholar]
- Olsen A. S., Prockop D. J. Transcription of human type I collagen genes. Variation in the relative rates of transcription of the pro alpha 1 and pro alpha 2 genes. Matrix. 1989 Mar;9(2):73–81. doi: 10.1016/s0934-8832(89)80024-1. [DOI] [PubMed] [Google Scholar]
- Overall C. M., Wrana J. L., Sodek J. Transcriptional and post-transcriptional regulation of 72-kDa gelatinase/type IV collagenase by transforming growth factor-beta 1 in human fibroblasts. Comparisons with collagenase and tissue inhibitor of matrix metalloproteinase gene expression. J Biol Chem. 1991 Jul 25;266(21):14064–14071. [PubMed] [Google Scholar]
- Peltonen J., Kähäri L., Uitto J., Jimenez S. A. Increased expression of type VI collagen genes in systemic sclerosis. Arthritis Rheum. 1990 Dec;33(12):1829–1835. doi: 10.1002/art.1780331211. [DOI] [PubMed] [Google Scholar]
- Peltonen L., Palotie A., Myllylä R., Krieg T., Oikarinen A. Collagen biosynthesis in systemic scleroderma: regulation of posttranslational modifications and synthesis of procollagen in cultured fibroblasts. J Invest Dermatol. 1985 Jan;84(1):14–18. doi: 10.1111/1523-1747.ep12274596. [DOI] [PubMed] [Google Scholar]
- Penttinen R. P., Kobayashi S., Bornstein P. Transforming growth factor beta increases mRNA for matrix proteins both in the presence and in the absence of changes in mRNA stability. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1105–1108. doi: 10.1073/pnas.85.4.1105. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlish J. S., Lemlich G., Fleischmajer R. Identification of collagen fibrils in scleroderma skin. J Invest Dermatol. 1988 Jan;90(1):48–54. doi: 10.1111/1523-1747.ep12462561. [DOI] [PubMed] [Google Scholar]
- Raghow R., Postlethwaite A. E., Keski-Oja J., Moses H. L., Kang A. H. Transforming growth factor-beta increases steady state levels of type I procollagen and fibronectin messenger RNAs posttranscriptionally in cultured human dermal fibroblasts. J Clin Invest. 1987 Apr;79(4):1285–1288. doi: 10.1172/JCI112950. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rossi P., Karsenty G., Roberts A. B., Roche N. S., Sporn M. B., de Crombrugghe B. A nuclear factor 1 binding site mediates the transcriptional activation of a type I collagen promoter by transforming growth factor-beta. Cell. 1988 Feb 12;52(3):405–414. doi: 10.1016/s0092-8674(88)80033-3. [DOI] [PubMed] [Google Scholar]
- Shiokawa S., Yasuda M., Nobunaga M. Unsuccessful search for mutant fibronectin genes in patients with systemic sclerosis. Arthritis Rheum. 1990 Dec;33(12):1868–1870. doi: 10.1002/art.1780331221. [DOI] [PubMed] [Google Scholar]
- Sollberg S., Peltonen J., Uitto J., Jimenez S. A. Elevated expression of beta 1 and beta 2 integrins, intercellular adhesion molecule 1, and endothelial leukocyte adhesion molecule 1 in the skin of patients with systemic sclerosis of recent onset. Arthritis Rheum. 1992 Mar;35(3):290–298. doi: 10.1002/art.1780350307. [DOI] [PubMed] [Google Scholar]
- Speth C., Oberbäumer I. Expression of basement membrane proteins: evidence for complex post-transcriptional control mechanisms. Exp Cell Res. 1993 Feb;204(2):302–310. doi: 10.1006/excr.1993.1037. [DOI] [PubMed] [Google Scholar]
- Stefanato C. M., Gorkiewicz-Petkow A., Jarzabek-Chorzelska M., Jablonska S., Chorzelski T. Morphea with high titer of fibronectin antibodies. Int J Dermatol. 1992 Mar;31(3):190–192. doi: 10.1111/j.1365-4362.1992.tb03933.x. [DOI] [PubMed] [Google Scholar]
- Uitto J., Bauer E. A., Eisen A. Z. Scleroderma: increased biosynthesis of triple-helical type I and type III procollagens associated with unaltered expression of collagenase by skin fibroblasts in culture. J Clin Invest. 1979 Oct;64(4):921–930. doi: 10.1172/JCI109558. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Uitto J., Halme J., Hannuksela M., Peltokallio P., Kivirikko K. I. Protocollagen proline hydroxylase activity in the skin of normal human subjects and of patients with scleroderma. Scand J Clin Lab Invest. 1969 May;23(3):241–247. doi: 10.3109/00365516909077656. [DOI] [PubMed] [Google Scholar]
- Varga J., Diaz-Perez A., Rosenbloom J., Jimenez S. A. PGE2 causes a coordinate decrease in the steady state levels of fibronectin and types I and III procollagen mRNAs in normal human dermal fibroblasts. Biochem Biophys Res Commun. 1987 Sep 30;147(3):1282–1288. doi: 10.1016/s0006-291x(87)80209-7. [DOI] [PubMed] [Google Scholar]
- Vuorio T., Mäkelä J. K., Vuorio E. Activation of type I collagen genes in cultured scleroderma fibroblasts. J Cell Biochem. 1985;28(2):105–113. doi: 10.1002/jcb.240280204. [DOI] [PubMed] [Google Scholar]
- Welsh K. I., Briggs D. C. Genetic and environmental factors in scleroderma. Curr Opin Rheumatol. 1991 Dec;3(6):944–946. doi: 10.1097/00002281-199112000-00008. [DOI] [PubMed] [Google Scholar]
- Wisdom R., Lee W. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev. 1991 Feb;5(2):232–243. doi: 10.1101/gad.5.2.232. [DOI] [PubMed] [Google Scholar]
- Wrana J. L., Overall C. M., Sodek J. Regulation of the expression of a secreted acidic protein rich in cysteine (SPARC) in human fibroblasts by transforming growth factor beta. Comparison of transcriptional and post-transcriptional control with fibronectin and type I collagen. Eur J Biochem. 1991 Apr 23;197(2):519–528. doi: 10.1111/j.1432-1033.1991.tb15940.x. [DOI] [PubMed] [Google Scholar]
- Xu W. D., Leroy E. C., Smith E. A. Fibronectin release by systemic sclerosis and normal dermal fibroblasts in response to TGF-beta. J Rheumatol. 1991 Feb;18(2):241–246. [PubMed] [Google Scholar]
- Yamakage A., Kikuchi K., Smith E. A., LeRoy E. C., Trojanowska M. Selective upregulation of platelet-derived growth factor alpha receptors by transforming growth factor beta in scleroderma fibroblasts. J Exp Med. 1992 May 1;175(5):1227–1234. doi: 10.1084/jem.175.5.1227. [DOI] [PMC free article] [PubMed] [Google Scholar]