Abstract
Mitochondrial fatty acid beta-oxidation plays a major role in providing the ATP required for reabsorptive processes in the adult rat kidney. However, the molecular mechanisms and signals involved in induction of the enzymes of fatty acid oxidation during development in this and other organs are unknown. We therefore studied the changes in the steady-state levels of mRNA encoding medium-chain acyl-CoA dehydrogenase (MCAD), which catalyses the initial step in mitochondrial fatty acid beta-oxidation, in the rat kidney cortex and medulla between postnatal days 10 and 30. Furthermore, we investigated whether the expression of MCAD and of mitochondrial malate dehydrogenase (mMDH), a key enzyme in the tricarboxylic acid cycle, might be co-ordinately regulated by circulating glucocorticoids in the immature kidney during development. In the cortex, the levels of MCAD mRNA rose 4-fold between day 10 and day 21, and then decreased from day 21 to day 30. In the medulla a postnatal increase in the concentration of MCAD mRNA (8-fold) was observed during the same period. Adrenalectomy prevented the 16-21-day developmental increases in MCAD and mMDH mRNA levels in the cortex and medulla; these could be restored by dexamethasone treatment. A single injection of dexamethasone into 10-day-old rats led to a rise in MCAD and mMDH mRNA levels in the renal cortex due to stimulation of gene transcription, as shown by nuclear run-on assays. Therefore MCAD and mMDH gene expression is tightly regulated at the transcriptional level by developmental changes in circulating glucocorticoid levels. These hormones might thus represent a good candidate as a co-ordinating factor in the expression of nuclear genes encoding mitochondrial enzymes in the kidney during postnatal development.
Full Text
The Full Text of this article is available as a PDF (766.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bastin J., Delaval E., Freund N., Razanoelina M., Djouadi F., Bismuth J., Geloso J. P. Effects of birth on energy metabolism in the rat kidney. Biochem J. 1988 Jun 1;252(2):337–341. doi: 10.1042/bj2520337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bastin J., Djouadi F., Geloso J. P., Merlet-Benichou C. Postnatal development of oxidative enzymes in various rat nephron segments: effect of weaning on different diets. Am J Physiol. 1990 Dec;259(6 Pt 2):F895–F901. doi: 10.1152/ajprenal.1990.259.6.F895. [DOI] [PubMed] [Google Scholar]
- Carter M. E., Gulick T., Moore D. D., Kelly D. P. A pleiotropic element in the medium-chain acyl coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs. Mol Cell Biol. 1994 Jul;14(7):4360–4372. doi: 10.1128/mcb.14.7.4360. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Carter M. E., Gulick T., Raisher B. D., Caira T., Ladias J. A., Moore D. D., Kelly D. P. Hepatocyte nuclear factor-4 activates medium chain acyl-CoA dehydrogenase gene transcription by interacting with a complex regulatory element. J Biol Chem. 1993 Jul 5;268(19):13805–13810. [PubMed] [Google Scholar]
- Celsi G., Wang Z. M., Akusjärvi G., Aperia A. Sensitive periods for glucocorticoids' regulation of Na+,K(+)-ATPase mRNA in the developing lung and kidney. Pediatr Res. 1993 Jan;33(1):5–9. doi: 10.1203/00006450-199301000-00002. [DOI] [PubMed] [Google Scholar]
- Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
- Delaval E., Andriamanantsara S., Freund N., Bastin J., Geloso J. P. Changes in carnitine-palmitoyl-transferase and carnitine-acetyl-transferase activity in rat kidney during development; effects of fasting. J Dev Physiol. 1985 Dec;7(6):365–372. [PubMed] [Google Scholar]
- Djouadi F., Bastin J., Gilbert T., Rötig A., Rustin P., Merlet-Benichou C. Mitochondrial biogenesis and development of respiratory chain enzymes in kidney cells: role of glucocorticoids. Am J Physiol. 1994 Jul;267(1 Pt 1):C245–C254. doi: 10.1152/ajpcell.1994.267.1.C245. [DOI] [PubMed] [Google Scholar]
- Djouadi F., Wijkhuisen A., Bastin J. Coordinate development of oxidative enzymes and Na-K-ATPase in thick ascending limb: role of corticosteroids. Am J Physiol. 1992 Aug;263(2 Pt 2):F237–F242. doi: 10.1152/ajprenal.1992.263.2.F237. [DOI] [PubMed] [Google Scholar]
- Girard J., Ferré P., Pégorier J. P., Duée P. H. Adaptations of glucose and fatty acid metabolism during perinatal period and suckling-weaning transition. Physiol Rev. 1992 Apr;72(2):507–562. doi: 10.1152/physrev.1992.72.2.507. [DOI] [PubMed] [Google Scholar]
- Grant P. M., Tellam J., May V. L., Strauss A. W. Isolation and nucleotide sequence of a cDNA clone encoding rat mitochondrial malate dehydrogenase. Nucleic Acids Res. 1986 Aug 11;14(15):6053–6066. doi: 10.1093/nar/14.15.6053. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hainline B. E., Kahlenbeck D. J., Grant J., Strauss A. W. Tissue specific and developmental expression of rat long-and medium-chain acyl-CoA dehydrogenases. Biochim Biophys Acta. 1993 Dec 14;1216(3):460–468. doi: 10.1016/0167-4781(93)90015-6. [DOI] [PubMed] [Google Scholar]
- Henning S. J. Postnatal development: coordination of feeding, digestion, and metabolism. Am J Physiol. 1981 Sep;241(3):G199–G214. doi: 10.1152/ajpgi.1981.241.3.G199. [DOI] [PubMed] [Google Scholar]
- Izquierdo J. M., Cuezva J. M. Thyroid hormones promote transcriptional activation of the nuclear gene coding for mitochondrial beta-F1-ATPase in rat liver. FEBS Lett. 1993 May 24;323(1-2):109–112. doi: 10.1016/0014-5793(93)81459-d. [DOI] [PubMed] [Google Scholar]
- Izquierdo J. M., Luis A. M., Cuezva J. M. Postnatal mitochondrial differentiation in rat liver. Regulation by thyroid hormones of the beta-subunit of the mitochondrial F1-ATPase complex. J Biol Chem. 1990 Jun 5;265(16):9090–9097. [PubMed] [Google Scholar]
- Izquierdo J. M., Ricart J., Ostronoff L. K., Egea G., Cuezva J. M. Changing patterns of transcriptional and post-transcriptional control of beta-F1-ATPase gene expression during mitochondrial biogenesis in liver. J Biol Chem. 1995 Apr 28;270(17):10342–10350. doi: 10.1074/jbc.270.17.10342. [DOI] [PubMed] [Google Scholar]
- Kelly D. P., Gordon J. I., Alpers R., Strauss A. W. The tissue-specific expression and developmental regulation of two nuclear genes encoding rat mitochondrial proteins. Medium chain acyl-CoA dehydrogenase and mitochondrial malate dehydrogenase. J Biol Chem. 1989 Nov 15;264(32):18921–18925. [PubMed] [Google Scholar]
- Kelly D. P., Kim J. J., Billadello J. J., Hainline B. E., Chu T. W., Strauss A. W. Nucleotide sequence of medium-chain acyl-CoA dehydrogenase mRNA and its expression in enzyme-deficient human tissue. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4068–4072. doi: 10.1073/pnas.84.12.4068. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lehman T. C., Hale D. E., Bhala A., Thorpe C. An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion. Anal Biochem. 1990 May 1;186(2):280–284. doi: 10.1016/0003-2697(90)90080-s. [DOI] [PubMed] [Google Scholar]
- Leone T. C., Cresci S., Carter M. E., Zhang Z., Lala D. S., Strauss A. W., Kelly D. P. The human medium chain Acyl-CoA dehydrogenase gene promoter consists of a complex arrangement of nuclear receptor response elements and Sp1 binding sites. J Biol Chem. 1995 Jul 7;270(27):16308–16314. doi: 10.1074/jbc.270.27.16308. [DOI] [PubMed] [Google Scholar]
- Luis A. M., Izquierdo J. M., Ostronoff L. K., Salinas M., Santarén J. F., Cuezva J. M. Translational regulation of mitochondrial differentiation in neonatal rat liver. Specific increase in the translational efficiency of the nuclear-encoded mitochondrial beta-F1-ATPase mRNA. J Biol Chem. 1993 Jan 25;268(3):1868–1875. [PubMed] [Google Scholar]
- Nagao M., Parimoo B., Tanaka K. Developmental, nutritional, and hormonal regulation of tissue-specific expression of the genes encoding various acyl-CoA dehydrogenases and alpha-subunit of electron transfer flavoprotein in rat. J Biol Chem. 1993 Nov 15;268(32):24114–24124. [PubMed] [Google Scholar]
- Nahoul K., Daffos F., Forestier F., Dehennin L. Corticosteroid sulfates in fetus plasma. J Steroid Biochem. 1989 Oct;33(4A):613–619. doi: 10.1016/0022-4731(89)90049-6. [DOI] [PubMed] [Google Scholar]
- Nanthakumar N. N., Henning S. J. Ontogeny of sucrase-isomaltase gene expression in rat intestine: responsiveness to glucocorticoids. Am J Physiol. 1993 Feb;264(2 Pt 1):G306–G311. doi: 10.1152/ajpgi.1993.264.2.G306. [DOI] [PubMed] [Google Scholar]
- Razanoelina M., Freund N., Bismuth J., Geloso J. P., Delaval E. Effect of lipid diet on mitochondrial palmitoyl-l-carnitine oxidation in kidney at postnatal development. J Dev Physiol. 1991 Nov;16(5):283–286. [PubMed] [Google Scholar]
- Tanaka K., Yokota I., Coates P. M., Strauss A. W., Kelly D. P., Zhang Z., Gregersen N., Andresen B. S., Matsubara Y., Curtis D. Mutations in the medium chain acyl-CoA dehydrogenase (MCAD) gene. Hum Mutat. 1992;1(4):271–279. doi: 10.1002/humu.1380010402. [DOI] [PubMed] [Google Scholar]
- Valcarce C., Navarrete R. M., Encabo P., Loeches E., Satrústegui J., Cuezva J. M. Postnatal development of rat liver mitochondrial functions. The roles of protein synthesis and of adenine nucleotides. J Biol Chem. 1988 Jun 5;263(16):7767–7775. [PubMed] [Google Scholar]
- Wirthensohn G., Guder W. G. Renal substrate metabolism. Physiol Rev. 1986 Apr;66(2):469–497. doi: 10.1152/physrev.1986.66.2.469. [DOI] [PubMed] [Google Scholar]