Abstract
Basic fibroblast growth factor (FGF-2) is synthesized as different molecular mass isoforms all lacking the signal-peptide sequence. The high molecular-mass isoforms (21-24 kDa) possess a signal sequence directing their nuclear translocation. The role of each isoform is still poorly understood, however, modifications in intracellular signalling pathways could explain some effects of these peptides. In order to evaluate the role of FGF-2 isoforms on the adenylate cyclase (AC) signalling pathway, we retrovirally infected a rat pancreatic cell line (AR4-2J) with point-mutated FGF-2 cDNAs, allowing the expression of the 18 (A5 cells) or 22.5 kDa isoform (A3 cells) at a low level. In membrane preparations of A3 cells, unscheduled expression of the 22.5 kDa FGF-2 isoform induced a 2-fold decrease in both basal and forskolin-stimulated AC activity. Studies carried out on intact cells also showed decreased accumulation of cAMP in A3 cells in the presence of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine. Both FGF-2 peptides also induced functional modifications of G-proteins without affecting their levels. The 22.5 kDa peptide led to enhanced ADP-ribosylation of both alpha(s)-subunits in vitro, whereas the expression of the low molecular-mass 18 kDa peptide resulted in a 2-fold increase in alpha12 and alpha0 ADP-ribosylations. Furthermore, control CAT cells (AR4-2J cells transfected with the retrovirus containing the chloramphenicol acetyltransferase gene) and A5 cells were growth-inhibited by 8-Br-cAMP, in contrast to A3 cells. These data provide evidence that the expression of FGF-2 peptides could play a role in cell functions by modifying the AC signalling pathway. FGF-2 peptides are able to modulate both AC activity and the regulatory G-proteins. Finally FGF-2 expression may interfere with cAMP-regulated cell proliferation.
Full Text
The Full Text of this article is available as a PDF (346.5 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Basilico C., Moscatelli D. The FGF family of growth factors and oncogenes. Adv Cancer Res. 1992;59:115–165. doi: 10.1016/s0065-230x(08)60305-x. [DOI] [PubMed] [Google Scholar]
- Bikfalvi A., Klein S., Pintucci G., Quarto N., Mignatti P., Rifkin D. B. Differential modulation of cell phenotype by different molecular weight forms of basic fibroblast growth factor: possible intracellular signaling by the high molecular weight forms. J Cell Biol. 1995 Apr;129(1):233–243. doi: 10.1083/jcb.129.1.233. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birnbaumer L., Abramowitz J., Brown A. M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. 1990 May 7;1031(2):163–224. doi: 10.1016/0304-4157(90)90007-y. [DOI] [PubMed] [Google Scholar]
- Bouche G., Gas N., Prats H., Baldin V., Tauber J. P., Teissié J., Amalric F. Basic fibroblast growth factor enters the nucleolus and stimulates the transcription of ribosomal genes in ABAE cells undergoing G0----G1 transition. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6770–6774. doi: 10.1073/pnas.84.19.6770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bugler B., Amalric F., Prats H. Alternative initiation of translation determines cytoplasmic or nuclear localization of basic fibroblast growth factor. Mol Cell Biol. 1991 Jan;11(1):573–577. doi: 10.1128/mcb.11.1.573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Buscail L., Gourlet P., Cauvin A., De Neef P., Gossen D., Arimura A., Miyata A., Coy D. H., Robberecht P., Christophe J. Presence of highly selective receptors for PACAP (pituitary adenylate cyclase activating peptide) in membranes from the rat pancreatic acinar cell line AR 4-2J. FEBS Lett. 1990 Mar 12;262(1):77–81. doi: 10.1016/0014-5793(90)80158-f. [DOI] [PubMed] [Google Scholar]
- Buscail L., Robberecht P., DeNeef P., Bui D. N., Hooghe R., Christophe J. Divergent regulation of beta 2-adrenoceptors and adenylate cyclase in the Cyc- mouse T lymphoma cell line TL2-9. Immunobiology. 1990 Aug;181(1):51–63. doi: 10.1016/s0171-2985(11)80165-8. [DOI] [PubMed] [Google Scholar]
- Couderc B., Prats H., Bayard F., Amalric F. Potential oncogenic effects of basic fibroblast growth factor requires cooperation between CUG and AUG-initiated forms. Cell Regul. 1991 Sep;2(9):709–718. doi: 10.1091/mbc.2.9.709. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Couvineau A., Darmoul D., Blais A., Rouyer-Fessard C., Daviaud D., Voisin T., Paris H., Rouot B., Laburthe M. Gs and Gi protein subunits during cell differentiation in intestinal crypt-villus axis: regulation at the mRNA level. Am J Physiol. 1992 Jun;262(6 Pt 1):C1478–C1484. doi: 10.1152/ajpcell.1992.262.6.C1478. [DOI] [PubMed] [Google Scholar]
- Estival A., Louvel D., Couderc B., Prats H., Hollande E., Vaysse N., Clémente F. Morphological and biological modifications induced in a rat pancreatic acinar cancer cell line (AR4-2J) by unscheduled expression of basic fibroblast growth factors. Cancer Res. 1993 Mar 1;53(5):1182–1187. [PubMed] [Google Scholar]
- Florkiewicz R. Z., Baird A., Gonzalez A. M. Multiple forms of bFGF: differential nuclear and cell surface localization. Growth Factors. 1991;4(4):265–275. doi: 10.3109/08977199109043912. [DOI] [PubMed] [Google Scholar]
- Florkiewicz R. Z., Majack R. A., Buechler R. D., Florkiewicz E. Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/Golgi pathway. J Cell Physiol. 1995 Mar;162(3):388–399. doi: 10.1002/jcp.1041620311. [DOI] [PubMed] [Google Scholar]
- Gospodarowicz D., Ferrara N., Schweigerer L., Neufeld G. Structural characterization and biological functions of fibroblast growth factor. Endocr Rev. 1987 May;8(2):95–114. doi: 10.1210/edrv-8-2-95. [DOI] [PubMed] [Google Scholar]
- Huff R. M., Neer E. J. Subunit interactions of native and ADP-ribosylated alpha 39 and alpha 41, two guanine nucleotide-binding proteins from bovine cerebral cortex. J Biol Chem. 1986 Jan 25;261(3):1105–1110. [PubMed] [Google Scholar]
- Jaye M., Schlessinger J., Dionne C. A. Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction. Biochim Biophys Acta. 1992 Jun 10;1135(2):185–199. doi: 10.1016/0167-4889(92)90136-y. [DOI] [PubMed] [Google Scholar]
- Johnson D. E., Williams L. T. Structural and functional diversity in the FGF receptor multigene family. Adv Cancer Res. 1993;60:1–41. doi: 10.1016/s0065-230x(08)60821-0. [DOI] [PubMed] [Google Scholar]
- Kobrin M. S., Yamanaka Y., Friess H., Lopez M. E., Korc M. Aberrant expression of type I fibroblast growth factor receptor in human pancreatic adenocarcinomas. Cancer Res. 1993 Oct 15;53(20):4741–4744. [PubMed] [Google Scholar]
- Livingstone C., MacDonald C., Willett B., Houslay M. D. Analysis of the adenylate cyclase signalling system, and alterations induced by culture with insulin, in a novel SV40-DNA-immortalized hepatocyte cell line (P9 cells). Biochem J. 1994 Jun 15;300(Pt 3):835–842. doi: 10.1042/bj3000835. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Logan A. Intracrine regulation at the nucleus--a further mechanism of growth factor activity? J Endocrinol. 1990 Jun;125(3):339–343. doi: 10.1677/joe.0.1250339. [DOI] [PubMed] [Google Scholar]
- Logan A., Logan S. D. Studies on the mechanisms of signalling and inhibition by pertussis toxin of fibroblast growth factor-stimulated mitogenesis in Balb/c 3T3 cells. Cell Signal. 1991;3(3):215–223. doi: 10.1016/0898-6568(91)90047-x. [DOI] [PubMed] [Google Scholar]
- Moroianu J., Riordan J. F. Nuclear translocation of angiogenic proteins in endothelial cells: an essential step in angiogenesis. Biochemistry. 1994 Oct 25;33(42):12535–12539. doi: 10.1021/bi00208a001. [DOI] [PubMed] [Google Scholar]
- Neer E. J. Heterotrimeric G proteins: organizers of transmembrane signals. Cell. 1995 Jan 27;80(2):249–257. doi: 10.1016/0092-8674(95)90407-7. [DOI] [PubMed] [Google Scholar]
- Neufeld G., Mitchell R., Ponte P., Gospodarowicz D. Expression of human basic fibroblast growth factor cDNA in baby hamster kidney-derived cells results in autonomous cell growth. J Cell Biol. 1988 Apr;106(4):1385–1394. doi: 10.1083/jcb.106.4.1385. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pradel P., Estival A., Seva C., Wicker-Planquart C., Puigserver A., Vaysse N., Clemente F. Caerulein and gastrin(2-17 ds) regulate differently synthesis of secretory enzymes, mRNA levels and cell proliferation in pancreatic acinar cells (AR4-2J). Biochem J. 1993 Feb 15;290(Pt 1):219–224. doi: 10.1042/bj2900219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Quarto N., Finger F. P., Rifkin D. B. The NH2-terminal extension of high molecular weight bFGF is a nuclear targeting signal. J Cell Physiol. 1991 May;147(2):311–318. doi: 10.1002/jcp.1041470217. [DOI] [PubMed] [Google Scholar]
- Sa G., Fox P. L. Basic fibroblast growth factor-stimulated endothelial cell movement is mediated by a pertussis toxin-sensitive pathway regulating phospholipase A2 activity. J Biol Chem. 1994 Feb 4;269(5):3219–3225. [PubMed] [Google Scholar]
- Taussig R., Gilman A. G. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1–4. doi: 10.1074/jbc.270.1.1. [DOI] [PubMed] [Google Scholar]
- Toyoshige M., Okuya S., Rebois R. V. Choleragen catalyzes ADP-ribosylation of the stimulatory G protein heterotrimer but not its free alpha-subunit. Biochemistry. 1994 Apr 26;33(16):4865–4871. doi: 10.1021/bi00182a014. [DOI] [PubMed] [Google Scholar]
