Abstract
An Arg-specific mono(ADP-ribosyl)transferase activity on the surface of human polymorphonuclear neutrophil leucocytes (PMNs) was confirmed by the use of diethylamino-(benzylidineamino)guanidine (DEA-BAG) as an ADP-ribose acceptor. Two separate HPLC systems were used to separate ADP-ribosyl-DEA-BAG from reaction mixtures, and its presence was confirmed by electrospray mass spectrometry. ADP-ribosyl-DEA-BAG was produced in the presence of PMNs, but not in their absence. Incubation of DEA-BAG with ADP-ribose (0.1-10 mM) did not yield ADP-ribosyl-DEA-BAG, which indicates that ADP-ribosyl-DEA-BAG formed in the presence of PMNs was not simply a product of a reaction between DEA-BAG and free ADP-ribose, due possibly to the hydrolysis of NAD+ by an NAD+ glycohydrolase. The assay of mono(ADP-ribosyl)transferase with agmatine as a substrate was modified for intact PMNs, and the activity was found to be approx. 50-fold lower than that in rabbit cardiac membranes. The Km of the enzyme for NAD+ was 100.1 30.4 microM and the Vmax 1.4 0.2 pmol of ADP-ribosylagmatine/h per 10(6) cells. The enzyme is likely to be linked to the cell surface via a glycosylphosphatidylinositol anchor, since incubation of intact PMNs with phosphoinositol-specific phospholipase C (PI-PLC) led to a 98% decrease in mono(ADP-ribosyl)transferase activity in the cells. Cell surface proteins were labelled after exposure of intact PMNs to [32P]NAD+. Their molecular masses were 79, 67, 46, 36 and 26 kDa. The time course for labelling was non-linear under these conditions over a period of 4 h. The labelled products were identified as mono(ADP-ribosyl)ated proteins by hydrolysis with snake venom phosphodiesterase to yield 5'-AMP.
Full Text
The Full Text of this article is available as a PDF (490.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clancy R. M., Leszczynska-Piziak J., Abramson S. B. Nitric oxide stimulates the ADP-ribosylation of actin in human neutrophils. Biochem Biophys Res Commun. 1993 Mar 31;191(3):847–852. doi: 10.1006/bbrc.1993.1294. [DOI] [PubMed] [Google Scholar]
- Donnelly L. E., Boyd R. S., Clifford C. P., Olmos G., Allport J. R., Lo G., MacDermot J. Endogenous substrates and functional role of eukaryotic mono(ADP-ribosyl) transferases. Biochem Pharmacol. 1994 Nov 1;48(9):1669–1675. doi: 10.1016/0006-2952(94)90450-2. [DOI] [PubMed] [Google Scholar]
- Donnelly L. E., Boyd R. S., MacDermot J. Gs alpha is a substrate for mono(ADP-ribosyl)transferase of NG108-15 cells. ADP-ribosylation regulates Gs alpha activity and abundance. Biochem J. 1992 Nov 15;288(Pt 1):331–336. doi: 10.1042/bj2880331. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Donnelly L. E., Boyd R. S., Williams R. J., Kelly E., MacDermot J. Inhibition of ADP-ribosyltransferase increases synthesis of Gs alpha in neuroblastoma x glioma hybrid cells and reverses iloprost-dependent heterologous loss of fluoride-sensitive adenylate cyclase. Biochem Pharmacol. 1995 Mar 15;49(6):767–776. doi: 10.1016/0006-2952(94)00483-3. [DOI] [PubMed] [Google Scholar]
- Formato M., Masala B., De Luca G. The levels of adenine nucleotides and pyridine coenzymes in red blood cells from the newborn, determined simultaneously by HPLC. Clin Chim Acta. 1990 Aug 15;189(2):131–137. doi: 10.1016/0009-8981(90)90083-5. [DOI] [PubMed] [Google Scholar]
- Honma T., Mandel P. NAD+ glycohydrolase of the plasma membrane prepared from glial and neuronal cells. J Neurochem. 1986 Sep;47(3):972–975. doi: 10.1111/j.1471-4159.1986.tb00706.x. [DOI] [PubMed] [Google Scholar]
- Iglewski W. J., Lee H., Muller P. ADP-ribosyltransferase from beef liver which ADP-ribosylates elongation factor-2. FEBS Lett. 1984 Jul 23;173(1):113–118. doi: 10.1016/0014-5793(84)81028-5. [DOI] [PubMed] [Google Scholar]
- Jacquemin C., Thibout H., Lambert B., Correze C. Endogenous ADP-ribosylation of Gs subunit and autonomous regulation of adenylate cyclase. Nature. 1986 Sep 11;323(6084):182–184. doi: 10.1038/323182a0. [DOI] [PubMed] [Google Scholar]
- Just I., Wollenberg P., Moss J., Aktories K. Cysteine-specific ADP-ribosylation of actin. Eur J Biochem. 1994 May 1;221(3):1047–1054. doi: 10.1111/j.1432-1033.1994.tb18823.x. [DOI] [PubMed] [Google Scholar]
- Kim U. H., Rockwood S. F., Kim H. R., Daynes R. A. Membrane-associated NAD+ glycohydrolase from rabbit erythrocytes is solubilized by phosphatidylinositol-specific phospholipase C. Biochim Biophys Acta. 1988 Apr 14;965(1):76–81. doi: 10.1016/0304-4165(88)90153-5. [DOI] [PubMed] [Google Scholar]
- Klebl B. M., Matsushita S., Pette D. Localization of an arginine-specific mono-ADP-ribosyltransferase in skeletal muscle sarcolemma and transverse tubules. FEBS Lett. 1994 Mar 28;342(1):66–70. doi: 10.1016/0014-5793(94)80586-5. [DOI] [PubMed] [Google Scholar]
- Lee A., Whyte M. K., Haslett C. Inhibition of apoptosis and prolongation of neutrophil functional longevity by inflammatory mediators. J Leukoc Biol. 1993 Oct;54(4):283–288. [PubMed] [Google Scholar]
- Lee H. C., Zocchi E., Guida L., Franco L., Benatti U., De Flora A. Production and hydrolysis of cyclic ADP-ribose at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Mar 15;191(2):639–645. doi: 10.1006/bbrc.1993.1265. [DOI] [PubMed] [Google Scholar]
- Leno G. H., Ledford B. E. ADP-ribosylation of the 78-kDa glucose-regulated protein during nutritional stress. Eur J Biochem. 1989 Dec 8;186(1-2):205–211. doi: 10.1111/j.1432-1033.1989.tb15196.x. [DOI] [PubMed] [Google Scholar]
- Matsuyama S., Tsuyama S. Mono-ADP-ribosylation in brain: purification and characterization of ADP-ribosyltransferases affecting actin from rat brain. J Neurochem. 1991 Oct;57(4):1380–1387. doi: 10.1111/j.1471-4159.1991.tb08304.x. [DOI] [PubMed] [Google Scholar]
- McDonald L. J., Wainschel L. A., Oppenheimer N. J., Moss J. Amino acid-specific ADP-ribosylation: structural characterization and chemical differentiation of ADP-ribose-cysteine adducts formed nonenzymatically and in a pertussis toxin-catalyzed reaction. Biochemistry. 1992 Dec 1;31(47):11881–11887. doi: 10.1021/bi00162a029. [DOI] [PubMed] [Google Scholar]
- McMahon K. K., Piron K. J., Ha V. T., Fullerton A. T. Developmental and biochemical characteristics of the cardiac membrane-bound arginine-specific mono-ADP-ribosyltransferase. Biochem J. 1993 Aug 1;293(Pt 3):789–793. doi: 10.1042/bj2930789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss J., Stanley S. J. Histone-dependent and histone-independent forms of an ADP-ribosyltransferase from human and turkey erythrocytes. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4809–4812. doi: 10.1073/pnas.78.8.4809. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moss J., Stanley S. J., Oppenheimer N. J. Substrate specificity and partial purification of a stereospecific NAD- and guanidine-dependent ADP-ribosyltransferase from avian erythrocytes. J Biol Chem. 1979 Sep 25;254(18):8891–8894. [PubMed] [Google Scholar]
- Moss J., Stanley S. J., Watkins P. A. Isolation and properties of an NAD- and guanidine-dependent ADP-ribosyltransferase from turkey erythrocytes. J Biol Chem. 1980 Jun 25;255(12):5838–5840. [PubMed] [Google Scholar]
- Moss J., Vaughan M. Isolation of an avian erythrocyte protein possessing ADP-ribosyltransferase activity and capable of activating adenylate cyclase. Proc Natl Acad Sci U S A. 1978 Aug;75(8):3621–3624. doi: 10.1073/pnas.75.8.3621. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Obara S., Mishima K., Yamada K., Taniguchi M., Shimoyama M. DNA-regulated arginine-specific mono(ADP-ribosyl)ation and de-ADP-ribosylation of endogenous acceptor proteins in human neutrophils. Biochem Biophys Res Commun. 1989 Aug 30;163(1):452–457. doi: 10.1016/0006-291x(89)92157-8. [DOI] [PubMed] [Google Scholar]
- Obara S., Yamada K., Yoshimura Y., Shimoyama M. Evidence for the endogenous GTP-dependent ADP-ribosylation of the alpha-subunit of the stimulatory guanyl-nucleotide-binding protein concomitant with an increase in basal adenylyl cyclase activity in chicken spleen cell membrane. Eur J Biochem. 1991 Aug 15;200(1):75–80. doi: 10.1111/j.1432-1033.1991.tb21050.x. [DOI] [PubMed] [Google Scholar]
- Okazaki I. J., Zolkiewska A., Nightingale M. S., Moss J. Immunological and structural conservation of mammalian skeletal muscle glycosylphosphatidylinositol-linked ADP-ribosyltransferases. Biochemistry. 1994 Nov 1;33(43):12828–12836. doi: 10.1021/bi00209a014. [DOI] [PubMed] [Google Scholar]
- Peterson J. E., Larew J. S., Graves D. J. Purification and partial characterization of arginine-specific ADP-ribosyltransferase from skeletal muscle microsomal membranes. J Biol Chem. 1990 Oct 5;265(28):17062–17069. [PubMed] [Google Scholar]
- Rankin P. W., Jacobson E. L., Benjamin R. C., Moss J., Jacobson M. K. Quantitative studies of inhibitors of ADP-ribosylation in vitro and in vivo. J Biol Chem. 1989 Mar 15;264(8):4312–4317. [PubMed] [Google Scholar]
- Savill J. S., Wyllie A. H., Henson J. E., Walport M. J., Henson P. M., Haslett C. Macrophage phagocytosis of aging neutrophils in inflammation. Programmed cell death in the neutrophil leads to its recognition by macrophages. J Clin Invest. 1989 Mar;83(3):865–875. doi: 10.1172/JCI113970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soman G., Graves D. J. Endogenous ADP-ribosylation in skeletal muscle membranes. Arch Biochem Biophys. 1988 Jan;260(1):56–66. doi: 10.1016/0003-9861(88)90424-9. [DOI] [PubMed] [Google Scholar]
- Soman G., Mickelson J. R., Louis C. F., Graves D. J. NAD: guanidino group specific mono ADP-ribosyltransferase activity in skeletal muscle. Biochem Biophys Res Commun. 1984 May 16;120(3):973–980. doi: 10.1016/s0006-291x(84)80202-8. [DOI] [PubMed] [Google Scholar]
- Soman G., Narayanan J., Martin B. L., Graves D. J. Use of substituted (benzylidineamino)guanidines in the study of guanidino group specific ADP-ribosyltransferase. Biochemistry. 1986 Jul 15;25(14):4113–4119. doi: 10.1021/bi00362a019. [DOI] [PubMed] [Google Scholar]
- Tanuma S., Endo H. Identification in human erythrocytes of mono(ADP-ribosyl) protein hydrolase that cleaves a mono(ADP-ribosyl) Gi linkage. FEBS Lett. 1990 Feb 26;261(2):381–384. doi: 10.1016/0014-5793(90)80597-c. [DOI] [PubMed] [Google Scholar]
- Terashima M., Mishima K., Yamada K., Tsuchiya M., Wakutani T., Shimoyama M. ADP-ribosylation of actins by arginine-specific ADP-ribosyltransferase purified from chicken heterophils. Eur J Biochem. 1992 Feb 15;204(1):305–311. doi: 10.1111/j.1432-1033.1992.tb16638.x. [DOI] [PubMed] [Google Scholar]
- Tsuchiya M., Hara N., Yamada K., Osago H., Shimoyama M. Cloning and expression of cDNA for arginine-specific ADP-ribosyltransferase from chicken bone marrow cells. J Biol Chem. 1994 Nov 4;269(44):27451–27457. [PubMed] [Google Scholar]
- Tsuchiya M., Tanigawa Y., Mishima K., Shimoyama M. Determination of ADP-ribosyl arginine anomers by reverse-phase high-performance liquid chromatography. Anal Biochem. 1986 Sep;157(2):381–384. doi: 10.1016/0003-2697(86)90641-x. [DOI] [PubMed] [Google Scholar]
- Ueda K., Hayaishi O. ADP-ribosylation. Annu Rev Biochem. 1985;54:73–100. doi: 10.1146/annurev.bi.54.070185.000445. [DOI] [PubMed] [Google Scholar]
- Wang J., Nemoto E., Kots A. Y., Kaslow H. R., Dennert G. Regulation of cytotoxic T cells by ecto-nicotinamide adenine dinucleotide (NAD) correlates with cell surface GPI-anchored/arginine ADP-ribosyltransferase. J Immunol. 1994 Nov 1;153(9):4048–4058. [PubMed] [Google Scholar]
- Wreggett K. A. Bacterial toxins and the role of ADP-ribosylation. J Recept Res. 1986;6(2):95–126. doi: 10.3109/10799898609073927. [DOI] [PubMed] [Google Scholar]
- Yost D. A., Moss J. Amino acid-specific ADP-ribosylation. Evidence for two distinct NAD:arginine ADP-ribosyltransferases in turkey erythrocytes. J Biol Chem. 1983 Apr 25;258(8):4926–4929. [PubMed] [Google Scholar]
- Zocchi E., Franco L., Guida L., Benatti U., Bargellesi A., Malavasi F., Lee H. C., De Flora A. A single protein immunologically identified as CD38 displays NAD+ glycohydrolase, ADP-ribosyl cyclase and cyclic ADP-ribose hydrolase activities at the outer surface of human erythrocytes. Biochem Biophys Res Commun. 1993 Nov 15;196(3):1459–1465. doi: 10.1006/bbrc.1993.2416. [DOI] [PubMed] [Google Scholar]
- Zolkiewska A., Moss J. Integrin alpha 7 as substrate for a glycosylphosphatidylinositol-anchored ADP-ribosyltransferase on the surface of skeletal muscle cells. J Biol Chem. 1993 Dec 5;268(34):25273–25276. [PubMed] [Google Scholar]
- Zolkiewska A., Moss J. Processing of ADP-ribosylated integrin alpha 7 in skeletal muscle myotubes. J Biol Chem. 1995 Apr 21;270(16):9227–9233. doi: 10.1074/jbc.270.16.9227. [DOI] [PubMed] [Google Scholar]
- Zolkiewska A., Nightingale M. S., Moss J. Molecular characterization of NAD:arginine ADP-ribosyltransferase from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11352–11356. doi: 10.1073/pnas.89.23.11352. [DOI] [PMC free article] [PubMed] [Google Scholar]