Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):1001–1005. doi: 10.1042/bj3151001

pH-dependence of the dithiol-oxidizing activity of DsbA (a periplasmic protein thiol:disulphide oxidoreductase) and protein disulphide-isomerase: studies with a novel simple peptide substrate.

L W Ruddock 1, T R Hirst 1, R B Freedman 1
PMCID: PMC1217253  PMID: 8645136

Abstract

A decapeptide containing two cysteine residues at positions 3 and 8 has been designed for use in monitoring the disulphide bond-forming activity of thiol:disulphide oxidoreductases. The peptide contains a tryptophan residue adjacent to one of the cysteine residues and an arginine residue adjacent to the other. Oxidation of this dithiol peptide to the disulphide state is accompanied by a significant change in tryptophan fluorescence emission intensity. This fluorescence quenching was used as the basis for monitoring the disulphide bond-forming activity of the enzymes protein disulphide-isomerase (PDI) and DsbA (a periplasmic protein thiol:disulphide oxidoreductase) in the pH range 4.0-7.5, where the rates of spontaneous or chemical oxidation are low. Reaction rates were found to be directly proportional to enzyme concentration, and more detailed analysis indicated that the rate-determining step in the overall process was the reoxidation of the reduced form of the enzyme by GSSG. The pH-dependence of the enzyme-catalysed reaction reflected primarily the pKa of the reactive cysteine residue at the active site of each enzyme. The data indicate a pKapp of 5.6 for bovine PDI and of 5.1 for Vibrio cholerae DsbA.

Full Text

The Full Text of this article is available as a PDF (428.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bardwell J. C., Beckwith J. The bonds that tie: catalyzed disulfide bond formation. Cell. 1993 Sep 10;74(5):769–771. doi: 10.1016/0092-8674(93)90455-y. [DOI] [PubMed] [Google Scholar]
  2. Bardwell J. C. Building bridges: disulphide bond formation in the cell. Mol Microbiol. 1994 Oct;14(2):199–205. doi: 10.1111/j.1365-2958.1994.tb01281.x. [DOI] [PubMed] [Google Scholar]
  3. Bardwell J. C., McGovern K., Beckwith J. Identification of a protein required for disulfide bond formation in vivo. Cell. 1991 Nov 1;67(3):581–589. doi: 10.1016/0092-8674(91)90532-4. [DOI] [PubMed] [Google Scholar]
  4. Creighton T. E., Bagley C. J., Cooper L., Darby N. J., Freedman R. B., Kemmink J., Sheikh A. On the biosynthesis of bovine pancreatic trypsin inhibitor (BPTI). Structure, processing, folding and disulphide bond formation of the precursor in vitro and in microsomes. J Mol Biol. 1993 Aug 20;232(4):1176–1196. doi: 10.1006/jmbi.1993.1470. [DOI] [PubMed] [Google Scholar]
  5. Creighton T. E., Freedman R. B. A model catalyst of protein disulphide bond formation. Curr Biol. 1993 Nov 1;3(11):790–793. doi: 10.1016/0960-9822(93)90034-l. [DOI] [PubMed] [Google Scholar]
  6. Creighton T. E., Zapun A., Darby N. J. Mechanisms and catalysts of disulfide bond formation in proteins. Trends Biotechnol. 1995 Jan;13(1):18–23. doi: 10.1016/s0167-7799(00)88896-4. [DOI] [PubMed] [Google Scholar]
  7. Darby N. J., Creighton T. E. Catalytic mechanism of DsbA and its comparison with that of protein disulfide isomerase. Biochemistry. 1995 Mar 21;34(11):3576–3587. doi: 10.1021/bi00011a012. [DOI] [PubMed] [Google Scholar]
  8. Darby N. J., Freedman R. B., Creighton T. E. Dissecting the mechanism of protein disulfide isomerase: catalysis of disulfide bond formation in a model peptide. Biochemistry. 1994 Jun 28;33(25):7937–7947. doi: 10.1021/bi00191a022. [DOI] [PubMed] [Google Scholar]
  9. De Lorenzo F., Goldberger R. F., Steers E., Jr, Givol D., Anfinsen B. Purification and properties of an enzyme from beef liver which catalyzes sulfhydryl-disulfide interchange in proteins. J Biol Chem. 1966 Apr 10;241(7):1562–1567. [PubMed] [Google Scholar]
  10. Dyson H. J., Gippert G. P., Case D. A., Holmgren A., Wright P. E. Three-dimensional solution structure of the reduced form of Escherichia coli thioredoxin determined by nuclear magnetic resonance spectroscopy. Biochemistry. 1990 May 1;29(17):4129–4136. doi: 10.1021/bi00469a016. [DOI] [PubMed] [Google Scholar]
  11. Freedman R. B., Hawkins H. C., McLaughlin S. H. Protein disulfide-isomerase. Methods Enzymol. 1995;251:397–406. doi: 10.1016/0076-6879(95)51143-1. [DOI] [PubMed] [Google Scholar]
  12. Freedman R. B., Hirst T. R., Tuite M. F. Protein disulphide isomerase: building bridges in protein folding. Trends Biochem Sci. 1994 Aug;19(8):331–336. doi: 10.1016/0968-0004(94)90072-8. [DOI] [PubMed] [Google Scholar]
  13. Freedman R. B. Protein folding. Folding helpers and unhelpful folders. Curr Biol. 1994 Oct 1;4(10):933–935. doi: 10.1016/s0960-9822(00)00210-4. [DOI] [PubMed] [Google Scholar]
  14. Freedman R. B. The formation of protein disulphide bonds. Curr Opin Struct Biol. 1995 Feb;5(1):85–91. doi: 10.1016/0959-440x(95)80013-q. [DOI] [PubMed] [Google Scholar]
  15. Gane P. J., Freedman R. B., Warwicker J. A molecular model for the redox potential difference between thioredoxin and DsbA, based on electrostatics calculations. J Mol Biol. 1995 Jun 2;249(2):376–387. doi: 10.1006/jmbi.1995.0303. [DOI] [PubMed] [Google Scholar]
  16. Hawkins H. C., Freedman R. B. The reactivities and ionization properties of the active-site dithiol groups of mammalian protein disulphide-isomerase. Biochem J. 1991 Apr 15;275(Pt 2):335–339. doi: 10.1042/bj2750335. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Holmgren A. Enzymatic reduction-oxidation of protein disulfides by thioredoxin. Methods Enzymol. 1984;107:295–300. doi: 10.1016/0076-6879(84)07019-1. [DOI] [PubMed] [Google Scholar]
  18. Kallis G. B., Holmgren A. Differential reactivity of the functional sulfhydryl groups of cysteine-32 and cysteine-35 present in the reduced form of thioredoxin from Escherichia coli. J Biol Chem. 1980 Nov 10;255(21):10261–10265. [PubMed] [Google Scholar]
  19. Kamitani S., Akiyama Y., Ito K. Identification and characterization of an Escherichia coli gene required for the formation of correctly folded alkaline phosphatase, a periplasmic enzyme. EMBO J. 1992 Jan;11(1):57–62. doi: 10.1002/j.1460-2075.1992.tb05027.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lambert N., Freedman R. B. Kinetics and specificity of homogeneous protein disulphide-isomerase in protein disulphide isomerization and in thiol-protein-disulphide oxidoreduction. Biochem J. 1983 Jul 1;213(1):235–243. doi: 10.1042/bj2130235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Langsetmo K., Fuchs J. A., Woodward C. The conserved, buried aspartic acid in oxidized Escherichia coli thioredoxin has a pKa of 7.5. Its titration produces a related shift in global stability. Biochemistry. 1991 Jul 30;30(30):7603–7609. doi: 10.1021/bi00244a032. [DOI] [PubMed] [Google Scholar]
  22. Nelson J. W., Creighton T. E. Reactivity and ionization of the active site cysteine residues of DsbA, a protein required for disulfide bond formation in vivo. Biochemistry. 1994 May 17;33(19):5974–5983. doi: 10.1021/bi00185a039. [DOI] [PubMed] [Google Scholar]
  23. Peek J. A., Taylor R. K. Characterization of a periplasmic thiol:disulfide interchange protein required for the functional maturation of secreted virulence factors of Vibrio cholerae. Proc Natl Acad Sci U S A. 1992 Jul 1;89(13):6210–6214. doi: 10.1073/pnas.89.13.6210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Roehl F. Binding of BAS 490 F to bc1-complex from yeast. Biochem Soc Trans. 1994 Feb;22(1):64S–64S. doi: 10.1042/bst022064s. [DOI] [PubMed] [Google Scholar]
  25. Weissman J. S., Kim P. S. Efficient catalysis of disulphide bond rearrangements by protein disulphide isomerase. Nature. 1993 Sep 9;365(6442):185–188. doi: 10.1038/365185a0. [DOI] [PubMed] [Google Scholar]
  26. Wunderlich M., Otto A., Maskos K., Mücke M., Seckler R., Glockshuber R. Efficient catalysis of disulfide formation during protein folding with a single active-site cysteine. J Mol Biol. 1995 Mar 17;247(1):28–33. doi: 10.1006/jmbi.1995.0119. [DOI] [PubMed] [Google Scholar]
  27. Yu J., Webb H., Hirst T. R. A homologue of the Escherichia coli DsbA protein involved in disulphide bond formation is required for enterotoxin biogenesis in Vibrio cholerae. Mol Microbiol. 1992 Jul;6(14):1949–1958. doi: 10.1111/j.1365-2958.1992.tb01368.x. [DOI] [PubMed] [Google Scholar]
  28. Zapun A., Creighton T. E. Effects of DsbA on the disulfide folding of bovine pancreatic trypsin inhibitor and alpha-lactalbumin. Biochemistry. 1994 May 3;33(17):5202–5211. doi: 10.1021/bi00183a025. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES