Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):715–720. doi: 10.1042/bj3150715

Structures of diphospho-myo-inositol pentakisphosphate and bisdiphospho-myo-inositol tetrakisphosphate from Dictyostelium resolved by NMR analysis.

T Laussmann 1, R Eujen 1, C M Weisshuhn 1, U Thiel 1, G Vogel 1
PMCID: PMC1217265  PMID: 8645148

Abstract

Diphospho-myo-inositol phosphates (PP-InsP5 and bis-PP-InsP4) were isolated from Dictyostelium in order to clarify the precise positional isomerism by two-dimensional 1H/31P-NMR analysis. The diphosphorylated inositol phosphates are 4-PP-Ins(1,2,3,5,6)P5 and 4,5-bis-PP-Ins(1,2,3,6)P4 or their corresponding enantiomers. The vicinal arrangement of the diphospho groups with its steric and electrostatic constraints possibly qualifies bis-PP-InsP4 as a metabolite with high phosphate-group-transfer potential in phosphotransferase reactions.

Full Text

The Full Text of this article is available as a PDF (582.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fleischer B., Xie J., Mayrleitner M., Shears S. B., Palmer D. J., Fleischer S. Golgi coatomer binds, and forms K(+)-selective channels gated by, inositol polyphosphates. J Biol Chem. 1994 Jul 8;269(27):17826–17832. [PubMed] [Google Scholar]
  2. Glennon M. C., Shears S. B. Turnover of inositol pentakisphosphates, inositol hexakisphosphate and diphosphoinositol polyphosphates in primary cultured hepatocytes. Biochem J. 1993 Jul 15;293(Pt 2):583–590. doi: 10.1042/bj2930583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Johnson K., Barrientos L. G., Le L., Murthy P. P. Application of two-dimensional total correlation spectroscopy for structure determination of individual inositol phosphates in a mixture. Anal Biochem. 1995 Nov 1;231(2):421–431. doi: 10.1006/abio.1995.0073. [DOI] [PubMed] [Google Scholar]
  4. Martin J. B., Bakker-Grunwald T., Klein G. 31P-NMR analysis of Entamoeba histolytica. Occurrence of high amounts of two inositol phosphates. Eur J Biochem. 1993 Jun 15;214(3):711–718. doi: 10.1111/j.1432-1033.1993.tb17972.x. [DOI] [PubMed] [Google Scholar]
  5. Mayr G. W. A novel metal-dye detection system permits picomolar-range h.p.l.c. analysis of inositol polyphosphates from non-radioactively labelled cell or tissue specimens. Biochem J. 1988 Sep 1;254(2):585–591. doi: 10.1042/bj2540585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Menniti F. S., Miller R. N., Putney J. W., Jr, Shears S. B. Turnover of inositol polyphosphate pyrophosphates in pancreatoma cells. J Biol Chem. 1993 Feb 25;268(6):3850–3856. [PubMed] [Google Scholar]
  7. Shears S. B., Ali N., Craxton A., Bembenek M. E. Synthesis and metabolism of bis-diphosphoinositol tetrakisphosphate in vitro and in vivo. J Biol Chem. 1995 May 5;270(18):10489–10497. doi: 10.1074/jbc.270.18.10489. [DOI] [PubMed] [Google Scholar]
  8. Stephens L., Radenberg T., Thiel U., Vogel G., Khoo K. H., Dell A., Jackson T. R., Hawkins P. T., Mayr G. W. The detection, purification, structural characterization, and metabolism of diphosphoinositol pentakisphosphate(s) and bisdiphosphoinositol tetrakisphosphate(s). J Biol Chem. 1993 Feb 25;268(6):4009–4015. [PubMed] [Google Scholar]
  9. Watts D. J., Ashworth J. M. Growth of myxameobae of the cellular slime mould Dictyostelium discoideum in axenic culture. Biochem J. 1970 Sep;119(2):171–174. doi: 10.1042/bj1190171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ye W., Ali N., Bembenek M. E., Shears S. B., Lafer E. M. Inhibition of clathrin assembly by high affinity binding of specific inositol polyphosphates to the synapse-specific clathrin assembly protein AP-3. J Biol Chem. 1995 Jan 27;270(4):1564–1568. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES