Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):745–751. doi: 10.1042/bj3150745

The role of residues glutamate-50 and phenylalanine-496 in Zymomonas mobilis pyruvate decarboxylase.

J M Candy 1, J Koga 1, P F Nixon 1, R G Duggleby 1
PMCID: PMC1217270  PMID: 8645153

Abstract

Several enzymes require thiamine diphosphate (ThDP) as an essential cofactor, and we have used one of these, pyruvate decarboxylase (PDC; EC 4.1.1.1) from Zymomonas mobilis, as a model for this group of enzymes. It is well suited for this purpose because of its stability, ease of purification, homotetrameric subunit structure and simple kinetic properties. Crystallographic analyses of three ThDP-dependent enzymes [Müller, Lindqvist, Furey, Schulz, Jordan and Schneider (1993) Structure 1, 95-103] have suggested that an invariant glutamate participates in catalysis. In order to evaluate the role of this residue, identified in PDC from Zymomonas mobilis as Glu-50, it has been altered to glutamine and aspartate by site-directed mutagenesis of the cloned gene. The mutant proteins were expressed in Escherichia coli. Here we demonstrate that substitution with aspartate yields an enzyme with 3% of the activity of the wild-type, but with normal kinetics for pyruvate. Replacement of Glu-50 with glutamine yields an enzyme with only 0.5% of the catalytic activity of the wild-type enzyme. Each of these mutant enzymes has a decreased affinity for both ThDP and Mg2+. It has been reported that the binding of cofactors to apoPDC quenches the intrinsic tryptophan fluorescence [Diefenbach and Duggleby (1991) Biochem. J. 276, 439-445] and we have identified the residue responsible as Trp-487 [Diefenbach, Candy, Mattick and Duggleby (1992) FEBS Lett. 296, 95-98]. Although this residue is some distance from the cofactor binding site, it lies in the dimer interface, and the proposal has been put forward [Dyda, Furey, Swaminathan, Sax, Farrenkopf and Jordan (1993) Biochemistry 32, 6165-6170] that alteration of ring stacking with Phe-496 of the adjacent subunit is the mechanism of fluorescence quenching when cofactors bind. The closely related enzyme indolepyruvate decarboxylase (from Enterobacter cloacae) has a leucine residue at the position corresponding to Phe-496 but shows fluorescence quenching properties that are similar to those of PDC. This suggests that the fluorescence quenching is due to some perturbation of the local environment of Trp-487 rather than to a specific interaction with Phe-496. This latter hypothesis is supported by our data: mutation of this phenylalanine to leucine, isoleucine or histidine in PDC does not eliminate the fluorescence quenching upon addition of cofactors.

Full Text

The Full Text of this article is available as a PDF (727.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abedinia M., Layfield R., Jones S. M., Nixon P. F., Mattick J. S. Nucleotide and predicted amino acid sequence of a cDNA clone encoding part of human transketolase. Biochem Biophys Res Commun. 1992 Mar 31;183(3):1159–1166. doi: 10.1016/s0006-291x(05)80312-2. [DOI] [PubMed] [Google Scholar]
  2. Candy J. M., Duggleby R. G. Investigation of the cofactor-binding site of Zymomonas mobilis pyruvate decarboxylase by site-directed mutagenesis. Biochem J. 1994 May 15;300(Pt 1):7–13. doi: 10.1042/bj3000007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Diefenbach R. J., Candy J. M., Mattick J. S., Duggleby R. G. Effects of substitution of aspartate-440 and tryptophan-487 in the thiamin diphosphate binding region of pyruvate decarboxylase from Zymomonas mobilis. FEBS Lett. 1992 Jan 13;296(1):95–98. doi: 10.1016/0014-5793(92)80411-9. [DOI] [PubMed] [Google Scholar]
  4. Diefenbach R. J., Duggleby R. G. Pyruvate decarboxylase from Zymomonas mobilis. Structure and re-activation of apoenzyme by the cofactors thiamin diphosphate and magnesium ion. Biochem J. 1991 Jun 1;276(Pt 2):439–445. doi: 10.1042/bj2760439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dyda F., Furey W., Swaminathan S., Sax M., Farrenkopf B., Jordan F. Catalytic centers in the thiamin diphosphate dependent enzyme pyruvate decarboxylase at 2.4-A resolution. Biochemistry. 1993 Jun 22;32(24):6165–6170. doi: 10.1021/bi00075a008. [DOI] [PubMed] [Google Scholar]
  6. Elvin C. M., Thompson P. R., Argall M. E., Hendry P., Stamford N. P., Lilley P. E., Dixon N. E. Modified bacteriophage lambda promoter vectors for overproduction of proteins in Escherichia coli. Gene. 1990 Mar 1;87(1):123–126. doi: 10.1016/0378-1119(90)90503-j. [DOI] [PubMed] [Google Scholar]
  7. Hawkins C. F., Borges A., Perham R. N. A common structural motif in thiamin pyrophosphate-binding enzymes. FEBS Lett. 1989 Sep 11;255(1):77–82. doi: 10.1016/0014-5793(89)81064-6. [DOI] [PubMed] [Google Scholar]
  8. Hopmann R. F. Hydroxyl-ion-induced subunit dissociation of east cytoplasmic pyruvate decarboxylase. A circular dichroism study. Eur J Biochem. 1980 Sep;110(1):311–318. doi: 10.1111/j.1432-1033.1980.tb04869.x. [DOI] [PubMed] [Google Scholar]
  9. Hübner G., König S., Schellenberger A., Koch M. H. An X-ray solution scattering study of the cofactor and activator induced structural changes in yeast pyruvate decarboxylase (PDC). FEBS Lett. 1990 Jun 18;266(1-2):17–20. doi: 10.1016/0014-5793(90)81495-a. [DOI] [PubMed] [Google Scholar]
  10. Hübner G., König S., Schnackerz K. D. Correlation of cofactor binding and the quaternary structure of pyruvate decarboxylase as revealed by 31P NMR spectroscopy. FEBS Lett. 1992 Dec 7;314(1):101–103. doi: 10.1016/0014-5793(92)81471-w. [DOI] [PubMed] [Google Scholar]
  11. Koga J., Adachi T., Hidaka H. Molecular cloning of the gene for indolepyruvate decarboxylase from Enterobacter cloacae. Mol Gen Genet. 1991 Apr;226(1-2):10–16. doi: 10.1007/BF00273581. [DOI] [PubMed] [Google Scholar]
  12. Koga J., Adachi T., Hidaka H. Purification and characterization of indolepyruvate decarboxylase. A novel enzyme for indole-3-acetic acid biosynthesis in Enterobacter cloacae. J Biol Chem. 1992 Aug 5;267(22):15823–15828. [PubMed] [Google Scholar]
  13. König S., Schellenberger A., Neef H., Schneider G. Specificity of coenzyme binding in thiamin diphosphate-dependent enzymes. Crystal structures of yeast transketolase in complex with analogs of thiamin diphosphate. J Biol Chem. 1994 Apr 8;269(14):10879–10882. [PubMed] [Google Scholar]
  14. Lindqvist Y., Schneider G., Ermler U., Sundström M. Three-dimensional structure of transketolase, a thiamine diphosphate dependent enzyme, at 2.5 A resolution. EMBO J. 1992 Jul;11(7):2373–2379. doi: 10.1002/j.1460-2075.1992.tb05301.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Muller Y. A., Lindqvist Y., Furey W., Schulz G. E., Jordan F., Schneider G. A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase. Structure. 1993 Oct 15;1(2):95–103. doi: 10.1016/0969-2126(93)90025-c. [DOI] [PubMed] [Google Scholar]
  16. Muller Y. A., Schulz G. E. Structure of the thiamine- and flavin-dependent enzyme pyruvate oxidase. Science. 1993 Feb 12;259(5097):965–967. doi: 10.1126/science.8438155. [DOI] [PubMed] [Google Scholar]
  17. Neale A. D., Scopes R. K., Wettenhall R. E., Hoogenraad N. J. Nucleotide sequence of the pyruvate decarboxylase gene from Zymomonas mobilis. Nucleic Acids Res. 1987 Feb 25;15(4):1753–1761. doi: 10.1093/nar/15.4.1753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Scorer C. A., Carrier M. J., Rosenberger R. F. Amino acid misincorporation during high-level expression of mouse epidermal growth factor in Escherichia coli. Nucleic Acids Res. 1991 Jul 11;19(13):3511–3516. doi: 10.1093/nar/19.13.3511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Smith P. K., Krohn R. I., Hermanson G. T., Mallia A. K., Gartner F. H., Provenzano M. D., Fujimoto E. K., Goeke N. M., Olson B. J., Klenk D. C. Measurement of protein using bicinchoninic acid. Anal Biochem. 1985 Oct;150(1):76–85. doi: 10.1016/0003-2697(85)90442-7. [DOI] [PubMed] [Google Scholar]
  20. Thompson J. D., Higgins D. G., Gibson T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994 Nov 11;22(22):4673–4680. doi: 10.1093/nar/22.22.4673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ullrich J. Structure-function relationships in pyruvate decarboxylase of yeast and wheat germ. Ann N Y Acad Sci. 1982;378:287–305. doi: 10.1111/j.1749-6632.1982.tb31203.x. [DOI] [PubMed] [Google Scholar]
  22. Ullrich J., Wollmer A. Yeast pyruvate decarboxylase: spectral studies of the recombination of the apoenzyme with thiamine pyrophosphate and magnesium. Hoppe Seylers Z Physiol Chem. 1971 Dec;352(12):1635–1644. doi: 10.1515/bchm2.1971.352.2.1635. [DOI] [PubMed] [Google Scholar]
  23. Wikner C., Meshalkina L., Nilsson U., Nikkola M., Lindqvist Y., Sundström M., Schneider G. Analysis of an invariant cofactor-protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis. J Biol Chem. 1994 Dec 23;269(51):32144–32150. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES