Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):791–798. doi: 10.1042/bj3150791

Regulation of gene expression for translation initiation factor eIF-2 alpha: importance of the 3' untranslated region.

S Miyamoto 1, J A Chiorini 1, E Urcelay 1, B Safer 1
PMCID: PMC1217276  PMID: 8645159

Abstract

Gene expression of the alpha-subunit of eukaryotic initiation factor-2 (eIF-2 alpha), involves transcriptional and post-transcriptional mechanisms. eIF-2 alpha is a single-copy gene expressing two mRNAs, 1.6 and 4.2 kb in size. Cloning and sequencing of the cDNA for the 4.2 kb mRNA revealed that it is the result of alternative polyadenylation site selection. Four polyadenylation sites were identified within the 3' untranslated region (UTR) of eIF-2 alpha, only two of which are normally utilized in human and mouse tissues. A functional role for the extended 3' UTR was assessed by comparing the translatability and stability of the 1.6 and 4.2 kb mRNAs. Both the 1.6 and 4.2 kb transcripts could be translated in vitro and were identified in vivo as being distributed on large polyribosomes. This indicates that both mRNAs are efficiently translated. Stability studies showed that in activated T-cells the 4.2 kb mRNA was more stable than the 1.6 kb mRNA. Polyadenylation site selection and mRNA stability differ for the two mRNAs of eIF-2 alpha. These activities might be modulated by sequence elements contained within the untranslated regions of the eIF-2 alpha gene.

Full Text

The Full Text of this article is available as a PDF (834.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed Y. F., Gilmartin G. M., Hanly S. M., Nevins J. R., Greene W. C. The HTLV-I Rex response element mediates a novel form of mRNA polyadenylation. Cell. 1991 Feb 22;64(4):727–737. doi: 10.1016/0092-8674(91)90502-p. [DOI] [PubMed] [Google Scholar]
  2. Alt F. W., Bothwell A. L., Knapp M., Siden E., Mather E., Koshland M., Baltimore D. Synthesis of secreted and membrane-bound immunoglobulin mu heavy chains is directed by mRNAs that differ at their 3' ends. Cell. 1980 Jun;20(2):293–301. doi: 10.1016/0092-8674(80)90615-7. [DOI] [PubMed] [Google Scholar]
  3. Batt D. B., Luo Y., Carmichael G. G. Polyadenylation and transcription termination in gene constructs containing multiple tandem polyadenylation signals. Nucleic Acids Res. 1994 Jul 25;22(14):2811–2816. doi: 10.1093/nar/22.14.2811. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Birnstiel M. L., Busslinger M., Strub K. Transcription termination and 3' processing: the end is in site! Cell. 1985 Jun;41(2):349–359. doi: 10.1016/s0092-8674(85)80007-6. [DOI] [PubMed] [Google Scholar]
  5. Caput D., Beutler B., Hartog K., Thayer R., Brown-Shimer S., Cerami A. Identification of a common nucleotide sequence in the 3'-untranslated region of mRNA molecules specifying inflammatory mediators. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1670–1674. doi: 10.1073/pnas.83.6.1670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Carter C. S., Leitman S. F., Cullis H., Muul L. M., Nason-Burchenal K., Rosenberg S. A., Klein H. G. Use of a continuous-flow cell separator in density gradient isolation of lymphocytes. Transfusion. 1987 Jul-Aug;27(4):362–365. doi: 10.1046/j.1537-2995.1987.27487264750.x. [DOI] [PubMed] [Google Scholar]
  7. Church G. M., Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984 Apr;81(7):1991–1995. doi: 10.1073/pnas.81.7.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cohen R. B., Boal T. R., Safer B. Increased eIF-2 alpha expression in mitogen-activated primary T lymphocytes. EMBO J. 1990 Dec;9(12):3831–3837. doi: 10.1002/j.1460-2075.1990.tb07601.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Denome R. M., Cole C. N. Patterns of polyadenylation site selection in gene constructs containing multiple polyadenylation signals. Mol Cell Biol. 1988 Nov;8(11):4829–4839. doi: 10.1128/mcb.8.11.4829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Duncan R., Hershey J. W. Heat shock-induced translational alterations in HeLa cells. Initiation factor modifications and the inhibition of translation. J Biol Chem. 1984 Oct 10;259(19):11882–11889. [PubMed] [Google Scholar]
  11. Early P., Rogers J., Davis M., Calame K., Bond M., Wall R., Hood L. Two mRNAs can be produced from a single immunoglobulin mu gene by alternative RNA processing pathways. Cell. 1980 Jun;20(2):313–319. doi: 10.1016/0092-8674(80)90617-0. [DOI] [PubMed] [Google Scholar]
  12. Edwalds-Gilbert G., Prescott J., Falck-Pedersen E. 3' RNA processing efficiency plays a primary role in generating termination-competent RNA polymerase II elongation complexes. Mol Cell Biol. 1993 Jun;13(6):3472–3480. doi: 10.1128/mcb.13.6.3472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ernst H., Duncan R. F., Hershey J. W. Cloning and sequencing of complementary DNAs encoding the alpha-subunit of translational initiation factor eIF-2. Characterization of the protein and its messenger RNA. J Biol Chem. 1987 Jan 25;262(3):1206–1212. [PubMed] [Google Scholar]
  14. Girard T. J., Warren L. A., Novotny W. F., Bejcek B. E., Miletich J. P., Broze G. J., Jr Identification of the 1.4 kb and 4.0 kb messages for the lipoprotein associated coagulation inhibitor and expression of the encoded protein. Thromb Res. 1989 Jul 1;55(1):37–50. doi: 10.1016/0049-3848(89)90454-4. [DOI] [PubMed] [Google Scholar]
  15. Heath C. V., Denome R. M., Cole C. N. Spatial constraints on polyadenylation signal function. J Biol Chem. 1990 Jun 5;265(16):9098–9104. [PubMed] [Google Scholar]
  16. Hennessy S. W., Frazier B. A., Kim D. D., Deckwerth T. L., Baumgartel D. M., Rotwein P., Frazier W. A. Complete thrombospondin mRNA sequence includes potential regulatory sites in the 3' untranslated region. J Cell Biol. 1989 Feb;108(2):729–736. doi: 10.1083/jcb.108.2.729. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hümbelin M., Safer B., Chiorini J. A., Hershey J. W., Cohen R. B. Isolation and characterization of the promoter and flanking regions of the gene encoding the human protein-synthesis-initiation factor 2 alpha. Gene. 1989 Sep 30;81(2):315–324. doi: 10.1016/0378-1119(89)90192-3. [DOI] [PubMed] [Google Scholar]
  18. Keaveney M., Parker M. G., Gannon F. Identification of a functional role for the 3' region of the human oestrogen receptor gene. J Mol Endocrinol. 1993 Apr;10(2):143–152. doi: 10.1677/jme.0.0100143. [DOI] [PubMed] [Google Scholar]
  19. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  20. Lagnado C. A., Brown C. Y., Goodall G. J. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol Cell Biol. 1994 Dec;14(12):7984–7995. doi: 10.1128/mcb.14.12.7984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Manley J. L., Proudfoot N. J., Platt T. RNA 3'-end formation. Genes Dev. 1989 Dec;3(12B):2218–2222. doi: 10.1101/gad.3.12b.2218. [DOI] [PubMed] [Google Scholar]
  22. Mann K. P., Weiss E. A., Nevins J. R. Alternative poly(A) site utilization during adenovirus infection coincides with a decrease in the activity of a poly(A) site processing factor. Mol Cell Biol. 1993 Apr;13(4):2411–2419. doi: 10.1128/mcb.13.4.2411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Mao X., Green J. M., Safer B., Lindsten T., Frederickson R. M., Miyamoto S., Sonenberg N., Thompson C. B. Regulation of translation initiation factor gene expression during human T cell activation. J Biol Chem. 1992 Oct 5;267(28):20444–20450. [PubMed] [Google Scholar]
  24. Murtagh J. J., Jr, Eddy R., Shows T. B., Moss J., Vaughan M. Different forms of Go alpha mRNA arise by alternative splicing of transcripts from a single gene on human chromosome 16. Mol Cell Biol. 1991 Feb;11(2):1146–1155. doi: 10.1128/mcb.11.2.1146. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Ochoa S. Regulation of protein synthesis initiation in eucaryotes. Arch Biochem Biophys. 1983 Jun;223(2):325–349. doi: 10.1016/0003-9861(83)90598-2. [DOI] [PubMed] [Google Scholar]
  26. Peppel K., Vinci J. M., Baglioni C. The AU-rich sequences in the 3' untranslated region mediate the increased turnover of interferon mRNA induced by glucocorticoids. J Exp Med. 1991 Feb 1;173(2):349–355. doi: 10.1084/jem.173.2.349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Prescott J., Falck-Pedersen E. Sequence elements upstream of the 3' cleavage site confer substrate strength to the adenovirus L1 and L3 polyadenylation sites. Mol Cell Biol. 1994 Jul;14(7):4682–4693. doi: 10.1128/mcb.14.7.4682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Proudfoot N. J. How RNA polymerase II terminates transcription in higher eukaryotes. Trends Biochem Sci. 1989 Mar;14(3):105–110. doi: 10.1016/0968-0004(89)90132-1. [DOI] [PubMed] [Google Scholar]
  29. Proudfoot N. Poly(A) signals. Cell. 1991 Feb 22;64(4):671–674. doi: 10.1016/0092-8674(91)90495-k. [DOI] [PubMed] [Google Scholar]
  30. Rogers J., Early P., Carter C., Calame K., Bond M., Hood L., Wall R. Two mRNAs with different 3' ends encode membrane-bound and secreted forms of immunoglobulin mu chain. Cell. 1980 Jun;20(2):303–312. doi: 10.1016/0092-8674(80)90616-9. [DOI] [PubMed] [Google Scholar]
  31. Safer B. 2B or not 2B: regulation of the catalytic utilization of eIF-2. Cell. 1983 May;33(1):7–8. doi: 10.1016/0092-8674(83)90326-4. [DOI] [PubMed] [Google Scholar]
  32. Shaw G., Kamen R. A conserved AU sequence from the 3' untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell. 1986 Aug 29;46(5):659–667. doi: 10.1016/0092-8674(86)90341-7. [DOI] [PubMed] [Google Scholar]
  33. Sureau A., Perbal B. Several mRNAs with variable 3' untranslated regions and different stability encode the human PR264/SC35 splicing factor. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):932–936. doi: 10.1073/pnas.91.3.932. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Tantravahi J., Alvira M., Falck-Pedersen E. Characterization of the mouse beta maj globin transcription termination region: a spacing sequence is required between the poly(A) signal sequence and multiple downstream termination elements. Mol Cell Biol. 1993 Jan;13(1):578–587. doi: 10.1128/mcb.13.1.578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wahle E., Keller W. The biochemistry of 3'-end cleavage and polyadenylation of messenger RNA precursors. Annu Rev Biochem. 1992;61:419–440. doi: 10.1146/annurev.bi.61.070192.002223. [DOI] [PubMed] [Google Scholar]
  36. Wahle E. The end of the message: 3'-end processing leading to polyadenylated messenger RNA. Bioessays. 1992 Feb;14(2):113–118. doi: 10.1002/bies.950140208. [DOI] [PubMed] [Google Scholar]
  37. Weiss I. M., Liebhaber S. A. Erythroid cell-specific mRNA stability elements in the alpha 2-globin 3' nontranslated region. Mol Cell Biol. 1995 May;15(5):2457–2465. doi: 10.1128/mcb.15.5.2457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Wieringa B., van der Zwaag-Gerritsen J., Mulder J., Ab G., Gruber M. Translation in vivo and in vitro of mRNAs coding for vitellogenin, serum albumin and very-low-density lipoprotein II from chicken liver. A difference in translational efficiency. Eur J Biochem. 1981 Mar;114(3):635–641. doi: 10.1111/j.1432-1033.1981.tb05191.x. [DOI] [PubMed] [Google Scholar]
  39. Wilson T., Treisman R. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 3' AU-rich sequences. Nature. 1988 Nov 24;336(6197):396–399. doi: 10.1038/336396a0. [DOI] [PubMed] [Google Scholar]
  40. Yiu G. K., Gu W., Hecht N. B. Heterogeneity in the 5' untranslated region of mouse cytochrome cT mRNAs leads to altered translational status of the mRNAs. Nucleic Acids Res. 1994 Nov 11;22(22):4599–4606. doi: 10.1093/nar/22.22.4599. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES