Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):827–831. doi: 10.1042/bj3150827

Substrate specificity and kinetic parameters of GLUT3 in rat cerebellar granule neurons.

F Maher 1, T M Davies-Hill 1, I A Simpson 1
PMCID: PMC1217281  PMID: 8645164

Abstract

This study examines the apparent affinity, catalytic-centre activity ("turnover number') and stereospecificity of the neuronal glucose transporter GLUT3 in primary cultured cerebellar granule neurons. Using a novel variation of the 3-O-[14C]methylglucose transport assay, by measuring zero-trans kinetics at 25 degrees C, GLUT3 was determined to be a high-apparent-affinity, high-activity, glucose transporter with a K(m) of 2.87 +/- 0.23 mM (mean +/- S.E.M.) for 3-O-methylglucose, a Vmax of 18.7 +/- 0.48 nmol/min per 10(6) cells, and cells, and a corresponding catalytic-centre activity of 853 s-1. Transport of 3-O-methylglucose was competed by glucose, mannose, 2-deoxyglucose and galactose, but not by fructose. This methodology is compared with the more common 2-[3H]deoxyglucose methodology and the [U-14C]-glucose transport method. The high affinity and transport activity of the neuronal glucose transporter GLUT3 appears to be an appropriate adaptation to meet the demands of neuronal metabolism at prevailing interstitial brain glucose concentrations (1-2 mM).

Full Text

The Full Text of this article is available as a PDF (370.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Asano T., Katagiri H., Takata K., Tsukuda K., Lin J. L., Ishihara H., Inukai K., Hirano H., Yazaki Y., Oka Y. Characterization of GLUT3 protein expressed in Chinese hamster ovary cells. Biochem J. 1992 Nov 15;288(Pt 1):189–193. doi: 10.1042/bj2880189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Axelrod J. D., Pilch P. F. Unique cytochalasin B binding characteristics of the hepatic glucose carrier. Biochemistry. 1983 Apr 26;22(9):2222–2227. doi: 10.1021/bi00278a025. [DOI] [PubMed] [Google Scholar]
  3. Bell G. I., Burant C. F., Takeda J., Gould G. W. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993 Sep 15;268(26):19161–19164. [PubMed] [Google Scholar]
  4. Carruthers A. Facilitated diffusion of glucose. Physiol Rev. 1990 Oct;70(4):1135–1176. doi: 10.1152/physrev.1990.70.4.1135. [DOI] [PubMed] [Google Scholar]
  5. Colville C. A., Seatter M. J., Jess T. J., Gould G. W., Thomas H. M. Kinetic analysis of the liver-type (GLUT2) and brain-type (GLUT3) glucose transporters in Xenopus oocytes: substrate specificities and effects of transport inhibitors. Biochem J. 1993 Mar 15;290(Pt 3):701–706. doi: 10.1042/bj2900701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Craik J. D., Elliott K. R. Kinetics of 3-O-methyl-D-glucose transport in isolated rat hepatocytes. Biochem J. 1979 Aug 15;182(2):503–508. doi: 10.1042/bj1820503. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Diamond I., Fishman R. A. High-affinity transport and phosphorylation of 2-deoxy-D-glucose in synaptosomes. J Neurochem. 1973 Jun;20(6):1533–1542. doi: 10.1111/j.1471-4159.1973.tb00271.x. [DOI] [PubMed] [Google Scholar]
  8. Dienel G. A., Cruz N. F., Mori K., Holden J. E., Sokoloff L. Direct measurement of the lambda of the lumped constant of the deoxyglucose method in rat brain: determination of lambda and lumped constant from tissue glucose concentration or equilibrium brain/plasma distribution ratio for methylglucose. J Cereb Blood Flow Metab. 1991 Jan;11(1):25–34. doi: 10.1038/jcbfm.1991.3. [DOI] [PubMed] [Google Scholar]
  9. Foley J. E., Cushman S. W., Salans L. B. Intracellular glucose concentration in small and large rat adipose cells. Am J Physiol. 1980 Feb;238(2):E180–E185. doi: 10.1152/ajpendo.1980.238.2.E180. [DOI] [PubMed] [Google Scholar]
  10. Foley J. E., Foley R., Gliemann J. Rate-limiting steps of 2-deoxyglucose uptake in rat adipocytes. Biochim Biophys Acta. 1980 Jul;599(2):689–698. doi: 10.1016/0005-2736(80)90210-2. [DOI] [PubMed] [Google Scholar]
  11. Gould G. W., Holman G. D. The glucose transporter family: structure, function and tissue-specific expression. Biochem J. 1993 Oct 15;295(Pt 2):329–341. doi: 10.1042/bj2950329. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gould G. W., Thomas H. M., Jess T. J., Bell G. I. Expression of human glucose transporters in Xenopus oocytes: kinetic characterization and substrate specificities of the erythrocyte, liver, and brain isoforms. Biochemistry. 1991 May 28;30(21):5139–5145. doi: 10.1021/bi00235a004. [DOI] [PubMed] [Google Scholar]
  13. Gruetter R., Novotny E. J., Boulware S. D., Rothman D. L., Mason G. F., Shulman G. I., Shulman R. G., Tamborlane W. V. Direct measurement of brain glucose concentrations in humans by 13C NMR spectroscopy. Proc Natl Acad Sci U S A. 1992 Feb 1;89(3):1109–1112. doi: 10.1073/pnas.89.3.1109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hara M., Matsuda Y., Okumura N., Hirai K., Nakagawa H. Effect of glucose starvation on glucose transport in neuronal cells in primary culture from rat brain. J Neurochem. 1989 Mar;52(3):909–912. doi: 10.1111/j.1471-4159.1989.tb02541.x. [DOI] [PubMed] [Google Scholar]
  15. Heaton G. M., Bachelard H. S. The kinetic properties of hexose transport into synaptosomes from guinea pig cerebral cortex. J Neurochem. 1973 Nov;21(5):1099–1108. doi: 10.1111/j.1471-4159.1973.tb07564.x. [DOI] [PubMed] [Google Scholar]
  16. Heidenrich K. A., Gilmore P. R., Garvey W. T. Glucose transport in primary cultured neurons. J Neurosci Res. 1989 Apr;22(4):397–407. doi: 10.1002/jnr.490220405. [DOI] [PubMed] [Google Scholar]
  17. Helgerson A. L., Carruthers A. Equilibrium ligand binding to the human erythrocyte sugar transporter. Evidence for two sugar-binding sites per carrier. J Biol Chem. 1987 Apr 25;262(12):5464–5475. [PubMed] [Google Scholar]
  18. Hellwig B., Joost H. G. Differentiation of erythrocyte-(GLUT1), liver-(GLUT2), and adipocyte-type (GLUT4) glucose transporters by binding of the inhibitory ligands cytochalasin B, forskolin, dipyridamole, and isobutylmethylxanthine. Mol Pharmacol. 1991 Sep;40(3):383–389. [PubMed] [Google Scholar]
  19. Joost H. G., Habberfield A. D., Simpson I. A., Laurenza A., Seamon K. B. Activation of adenylate cyclase and inhibition of glucose transport in rat adipocytes by forskolin analogues: structural determinants for distinct sites of action. Mol Pharmacol. 1988 Apr;33(4):449–453. [PubMed] [Google Scholar]
  20. Lavis V. R., Lee D. P., Shenolikar S. Evidence that forskolin binds to the glucose transporter of human erythrocytes. J Biol Chem. 1987 Oct 25;262(30):14571–14575. [PubMed] [Google Scholar]
  21. Lowe A. G., Walmsley A. R. The kinetics of glucose transport in human red blood cells. Biochim Biophys Acta. 1986 May 28;857(2):146–154. doi: 10.1016/0005-2736(86)90342-1. [DOI] [PubMed] [Google Scholar]
  22. Maher F., Simpson I. A. The GLUT3 glucose transporter is the predominant isoform in primary cultured neurons: assessment by biosynthetic and photoaffinity labelling. Biochem J. 1994 Jul 15;301(Pt 2):379–384. doi: 10.1042/bj3010379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Maher F., Vannucci S. J., Simpson I. A. Glucose transporter proteins in brain. FASEB J. 1994 Oct;8(13):1003–1011. doi: 10.1096/fasebj.8.13.7926364. [DOI] [PubMed] [Google Scholar]
  24. Maher F., Vannucci S., Takeda J., Simpson I. A. Expression of mouse-GLUT3 and human-GLUT3 glucose transporter proteins in brain. Biochem Biophys Res Commun. 1992 Jan 31;182(2):703–711. doi: 10.1016/0006-291x(92)91789-s. [DOI] [PubMed] [Google Scholar]
  25. Nishimura H., Pallardo F. V., Seidner G. A., Vannucci S., Simpson I. A., Birnbaum M. J. Kinetics of GLUT1 and GLUT4 glucose transporters expressed in Xenopus oocytes. J Biol Chem. 1993 Apr 25;268(12):8514–8520. [PubMed] [Google Scholar]
  26. Shanahan M. F. Characterization of cytochalasin B photoincorporation into human erythrocyte D-glucose transporter and F-actin. Biochemistry. 1983 May 24;22(11):2750–2756. doi: 10.1021/bi00280a024. [DOI] [PubMed] [Google Scholar]
  27. Sørensen S. S., Christensen F., Clausen T. The relationship between the transport of glucose and cations across cell membranes in isolated tissues. X. Effect of glucose transport stimuli on the efflux of isotopically labelled calcium and 3-O-methylglucose from soleus muscles and epididymal fat pads of the rat. Biochim Biophys Acta. 1980 Nov 4;602(2):433–445. doi: 10.1016/0005-2736(80)90322-3. [DOI] [PubMed] [Google Scholar]
  28. Wardzala L. J., Cushman S. W., Salans L. B. Mechanism of insulin action on glucose transport in the isolated rat adipose cell. Enhancement of the number of functional transport systems. J Biol Chem. 1978 Nov 25;253(22):8002–8005. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES