Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 1;315(Pt 3):845–849. doi: 10.1042/bj3150845

Heat shock proteins and macrophage resistance to the toxic effects of nitric oxide.

M R Hirvonen 1, B Brüne 1, E G Lapetina 1
PMCID: PMC1217283  PMID: 8645166

Abstract

Nitric oxide (NO) functions as a pathophysiological mediator in mammalian tissues. Activated macrophages produce NO as a non-specific immune response directed against invading bacteria or micro-organisms. The same macrophages that initiate the production of NO also can be toxically affected by NO. Incubation of RAW 264.7 macrophages with lipopolysaccharide (LPS) and/or interferon-gamma (INF-gamma) induced the formation of NO by the activation of a cytokine-inducible NO synthase (NOS). The viability of these macrophages was inversely correlated with the formation of nitrite, a final NO-oxidation product measurable in the incubation medium. The addition of an NOS inhibitor, NG-monomethyl-L-arginine, diminished NO formation and preserved cell viability in a dose- and time-dependent fashion. Treatment of macrophages with ten cycles of non-lethal doses of LPS and INF-gamma, each followed by subculturing of the surviving cells, resulted in cell resistance to the NO toxic insult induced by LPS and INF-gamma. These resistant macrophages showed a 2-fold increase in the expression of the constitutive heat shock protein (HSC 70) which is known to be involved in protecting cells against the action of various metabolic insults. Our results establish a link between cell resistance to the toxic effects of NO, and the expression of heat shock proteins in RAW 264.7 macrophages.

Full Text

The Full Text of this article is available as a PDF (451.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albina J. E., Cui S., Mateo R. B., Reichner J. S. Nitric oxide-mediated apoptosis in murine peritoneal macrophages. J Immunol. 1993 Jun 1;150(11):5080–5085. [PubMed] [Google Scholar]
  2. Albina J. E., Mills C. D., Henry W. L., Jr, Caldwell M. D. Regulation of macrophage physiology by L-arginine: role of the oxidative L-arginine deiminase pathway. J Immunol. 1989 Dec 1;143(11):3641–3646. [PubMed] [Google Scholar]
  3. Craig E. A., Weissman J. S., Horwich A. L. Heat shock proteins and molecular chaperones: mediators of protein conformation and turnover in the cell. Cell. 1994 Aug 12;78(3):365–372. doi: 10.1016/0092-8674(94)90416-2. [DOI] [PubMed] [Google Scholar]
  4. Gaillard T., Mülsch A., Klein H., Decker K. Regulation by prostaglandin E2 of cytokine-elicited nitric oxide synthesis in rat liver macrophages. Biol Chem Hoppe Seyler. 1992 Sep;373(9):897–902. doi: 10.1515/bchm3.1992.373.2.897. [DOI] [PubMed] [Google Scholar]
  5. Green L. C., Wagner D. A., Glogowski J., Skipper P. L., Wishnok J. S., Tannenbaum S. R. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982 Oct;126(1):131–138. doi: 10.1016/0003-2697(82)90118-x. [DOI] [PubMed] [Google Scholar]
  6. Hibbs J. B., Jr, Taintor R. R., Vavrin Z., Rachlin E. M. Nitric oxide: a cytotoxic activated macrophage effector molecule. Biochem Biophys Res Commun. 1988 Nov 30;157(1):87–94. doi: 10.1016/s0006-291x(88)80015-9. [DOI] [PubMed] [Google Scholar]
  7. Hibbs J. B., Jr, Vavrin Z., Taintor R. R. L-arginine is required for expression of the activated macrophage effector mechanism causing selective metabolic inhibition in target cells. J Immunol. 1987 Jan 15;138(2):550–565. [PubMed] [Google Scholar]
  8. Jacquier-Sarlin M. R., Fuller K., Dinh-Xuan A. T., Richard M. J., Polla B. S. Protective effects of hsp70 in inflammation. Experientia. 1994 Nov 30;50(11-12):1031–1038. doi: 10.1007/BF01923458. [DOI] [PubMed] [Google Scholar]
  9. Knowles R. G., Moncada S. Nitric oxide synthases in mammals. Biochem J. 1994 Mar 1;298(Pt 2):249–258. doi: 10.1042/bj2980249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kusher D. I., Ware C. F., Gooding L. R. Induction of the heat shock response protects cells from lysis by tumor necrosis factor. J Immunol. 1990 Nov 1;145(9):2925–2931. [PubMed] [Google Scholar]
  11. Laszlo A., Li G. C. Heat-resistant variants of Chinese hamster fibroblasts altered in expression of heat shock protein. Proc Natl Acad Sci U S A. 1985 Dec;82(23):8029–8033. doi: 10.1073/pnas.82.23.8029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lehmann V., Freudenberg M. A., Galanos C. Lethal toxicity of lipopolysaccharide and tumor necrosis factor in normal and D-galactosamine-treated mice. J Exp Med. 1987 Mar 1;165(3):657–663. doi: 10.1084/jem.165.3.657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Liu R. Y., Corry P. M., Lee Y. J. Regulation of chemical stress-induced hsp70 gene expression in murine L929 cells. J Cell Sci. 1994 Aug;107(Pt 8):2209–2214. doi: 10.1242/jcs.107.8.2209. [DOI] [PubMed] [Google Scholar]
  14. Liu R. Y., Kim D., Yang S. H., Li G. C. Dual control of heat shock response: involvement of a constitutive heat shock element-binding factor. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):3078–3082. doi: 10.1073/pnas.90.7.3078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Messmer U. K., Lapetina E. G., Brüne B. Nitric oxide-induced apoptosis in RAW 264.7 macrophages is antagonized by protein kinase C- and protein kinase A-activating compounds. Mol Pharmacol. 1995 Apr;47(4):757–765. [PubMed] [Google Scholar]
  16. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J. 1992 Sep;6(12):3051–3064. [PubMed] [Google Scholar]
  17. Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
  18. Palmer R. M., Bridge L., Foxwell N. A., Moncada S. The role of nitric oxide in endothelial cell damage and its inhibition by glucocorticoids. Br J Pharmacol. 1992 Jan;105(1):11–12. doi: 10.1111/j.1476-5381.1992.tb14202.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Sherman P. A., Laubach V. E., Reep B. R., Wood E. R. Purification and cDNA sequence of an inducible nitric oxide synthase from a human tumor cell line. Biochemistry. 1993 Nov 2;32(43):11600–11605. doi: 10.1021/bi00094a017. [DOI] [PubMed] [Google Scholar]
  20. Stuehr D. J., Marletta M. A. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysaccharide. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7738–7742. doi: 10.1073/pnas.82.22.7738. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Welch W. J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease. Physiol Rev. 1992 Oct;72(4):1063–1081. doi: 10.1152/physrev.1992.72.4.1063. [DOI] [PubMed] [Google Scholar]
  22. Williams R. S., Thomas J. A., Fina M., German Z., Benjamin I. J. Human heat shock protein 70 (hsp70) protects murine cells from injury during metabolic stress. J Clin Invest. 1993 Jul;92(1):503–508. doi: 10.1172/JCI116594. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES