Abstract
Endothelin-converting enzyme-1 (ECE-1) is involved in the conversion of big endothelins (big ETs) into endothelins (ETs) and shows sequence similarity with neutral endopeptidase-24.11 (NEP). Unlike NEP, ECE-1 exists as a disulphide-linked dimer. Here we reveal that Cys412 is solely responsible for the dimerization of rat ECE-1. The C412S mutant enzyme, which existed as a monomer, showed no difference in glycosylation level, subcellular localization of clustering structure formation, but showed a higher K(m) and lower kcat for big ET-1 compared with the wild-type enzyme. These results indicate that dimerization of ECE-1 is preferential for effective conversion of big ETs into ETs. In addition, complete loss of activity in the mutants E592Q, E651Q and H716Q confirmed that these residues are responsible for catalytic activity, zinc binding and stabilization of the intermediate during the transition state respectively. In contrast, the catalytic properties of mutant enzymes containing a substitution at Arg129 or Glu752 were not markedly different from those of the wild-type enzyme, suggesting that these residues play only a minor role, if any, in substrate binding, in contrast with their role in NEP.
Full Text
The Full Text of this article is available as a PDF (380.4 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bateman R. C., Jr, Jackson D., Slaughter C. A., Unnithan S., Chai Y. G., Moomaw C., Hersh L. B. Identification of the active-site arginine in rat neutral endopeptidase 24.11 (enkephalinase) as arginine 102 and analysis of a glutamine 102 mutant. J Biol Chem. 1989 Apr 15;264(11):6151–6157. [PubMed] [Google Scholar]
- Beaumont A., Le Moual H., Boileau G., Crine P., Roques B. P. Evidence that both arginine 102 and arginine 747 are involved in substrate binding to neutral endopeptidase (EC 3.4.24.11). J Biol Chem. 1991 Jan 5;266(1):214–220. [PubMed] [Google Scholar]
- DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
- Dion N., Le Moual H., Crine P., Boileau G. Kinetic evidence that His-711 of neutral endopeptidase 24.11 is involved in stabilization of the transition state. FEBS Lett. 1993 Mar 8;318(3):301–304. doi: 10.1016/0014-5793(93)80533-z. [DOI] [PubMed] [Google Scholar]
- Emoto N., Yanagisawa M. Endothelin-converting enzyme-2 is a membrane-bound, phosphoramidon-sensitive metalloprotease with acidic pH optimum. J Biol Chem. 1995 Jun 23;270(25):15262–15268. doi: 10.1074/jbc.270.25.15262. [DOI] [PubMed] [Google Scholar]
- Kenny A. J., Maroux S. Topology of microvillar membrance hydrolases of kidney and intestine. Physiol Rev. 1982 Jan;62(1):91–128. doi: 10.1152/physrev.1982.62.1.91. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Le Moual H., Devault A., Roques B. P., Crine P., Boileau G. Identification of glutamic acid 646 as a zinc-coordinating residue in endopeptidase-24.11. J Biol Chem. 1991 Aug 25;266(24):15670–15674. [PubMed] [Google Scholar]
- Le Moual H., Dion N., Roques B. P., Crine P., Boileau G. Asp650 is crucial for catalytic activity of neutral endopeptidase 24-11. Eur J Biochem. 1994 Apr 1;221(1):475–480. doi: 10.1111/j.1432-1033.1994.tb18760.x. [DOI] [PubMed] [Google Scholar]
- Le Moual H., Roques B. P., Crine P., Boileau G. Substitution of potential metal-coordinating amino acid residues in the zinc-binding site of endopeptidase-24.11. FEBS Lett. 1993 Jun 14;324(2):196–200. doi: 10.1016/0014-5793(93)81392-d. [DOI] [PubMed] [Google Scholar]
- Marchand P., Tang J., Bond J. S. Membrane association and oligomeric organization of the alpha and beta subunits of mouse meprin A. J Biol Chem. 1994 May 27;269(21):15388–15393. [PubMed] [Google Scholar]
- Opgenorth T. J., Wu-Wong J. R., Shiosaki K. Endothelin-converting enzymes. FASEB J. 1992 Jun;6(9):2653–2659. doi: 10.1096/fasebj.6.9.1612289. [DOI] [PubMed] [Google Scholar]
- Rawlings N. D., Barrett A. J. Evolutionary families of peptidases. Biochem J. 1993 Feb 15;290(Pt 1):205–218. doi: 10.1042/bj2900205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schmidt M., Kröger B., Jacob E., Seulberger H., Subkowski T., Otter R., Meyer T., Schmalzing G., Hillen H. Molecular characterization of human and bovine endothelin converting enzyme (ECE-1). FEBS Lett. 1994 Dec 19;356(2-3):238–243. doi: 10.1016/0014-5793(94)01277-6. [DOI] [PubMed] [Google Scholar]
- Shimada K., Takahashi M., Ikeda M., Tanzawa K. Identification and characterization of two isoforms of an endothelin-converting enzyme-1. FEBS Lett. 1995 Sep 4;371(2):140–144. doi: 10.1016/0014-5793(95)00886-e. [DOI] [PubMed] [Google Scholar]
- Shimada K., Takahashi M., Tanzawa K. Cloning and functional expression of endothelin-converting enzyme from rat endothelial cells. J Biol Chem. 1994 Jul 15;269(28):18275–18278. [PubMed] [Google Scholar]
- Suzuki N., Matsumoto H., Kitada C., Kimura S., Miyauchi T., Fujino M. A sandwich-type enzyme immunoassay to detect immunoreactive big-endothelin-1 in plasma. J Immunol Methods. 1990 Mar 9;127(2):165–170. doi: 10.1016/0022-1759(90)90065-4. [DOI] [PubMed] [Google Scholar]
- Takahashi M., Fukuda K., Shimada K., Barnes K., Turner A. J., Ikeda M., Koike H., Yamamoto Y., Tanzawa K. Localization of rat endothelin-converting enzyme to vascular endothelial cells and some secretory cells. Biochem J. 1995 Oct 15;311(Pt 2):657–665. doi: 10.1042/bj3110657. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Takahashi M., Matsushita Y., Iijima Y., Tanzawa K. Purification and characterization of endothelin-converting enzyme from rat lung. J Biol Chem. 1993 Oct 5;268(28):21394–21398. [PubMed] [Google Scholar]
- Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Turner A. J., Murphy L. J. Molecular pharmacology of endothelin converting enzymes. Biochem Pharmacol. 1996 Jan 26;51(2):91–102. doi: 10.1016/0006-2952(95)02036-5. [DOI] [PubMed] [Google Scholar]
- Yanagisawa M., Kurihara H., Kimura S., Tomobe Y., Kobayashi M., Mitsui Y., Yazaki Y., Goto K., Masaki T. A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature. 1988 Mar 31;332(6163):411–415. doi: 10.1038/332411a0. [DOI] [PubMed] [Google Scholar]