Abstract
Granzyme A is a serine protease stored in cytoplasmic granules of cytotoxic and helper T lymphocytes. This protease seems to elicit thrombin receptor-mediated responses in neural cells, thereby triggering neurite retraction and reversal of astrocyte stellation. Here we report that granzyme A does not cause platelet aggregation even at concentrations that are more than two orders of magnitude higher than the EC50 for granzyme A in causing morphological changes in neural cells. However, granzyme A blocks thrombin-induced platelet aggregation in a dose-dependent manner without affecting the response to either ADP or to the peptide agonist of the thrombin receptor SFLLRN that corresponds in sequence to the tethered ligand domain. The inability of granzyme A to cause aggregation and its inhibition of thrombin-induced aggregation were seen in platelets from man, rat and mouse. Granzyme A does not affect the catalytic activity of thrombin in cleaving a chromogenic substrate or the macromolecular substrate fibrinogen. However, granzyme A does seem to cleave the thrombin receptor on platelets to produce a weak Ca2+ signal and reduce the response to subsequent challenge with thrombin, but does not induce a signal in thrombin-stimulated platelets. It is proposed that granzyme A interacts with the thrombin receptor found on platelets in a manner that is insufficient to cause aggregation, but sufficient to compete with thrombin for the receptor. These results suggest that granzyme A cleaves the thrombin receptor at a rate that is insufficient to cause platelet aggregation but is sufficient to cause morphological changes in neural cells. Furthermore, these observations demonstrate that granzyme A release occurring during immune responses within blood vessels would not directly cause platelet aggregation.
Full Text
The Full Text of this article is available as a PDF (490.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Beecher K. L., Andersen T. T., Fenton J. W., 2nd, Festoff B. W. Thrombin receptor peptides induce shape change in neonatal murine astrocytes in culture. J Neurosci Res. 1994 Jan;37(1):108–115. doi: 10.1002/jnr.490370115. [DOI] [PubMed] [Google Scholar]
- Berliner L. J. Structure-function relationships in human alpha- and gamma-thrombins. Mol Cell Biochem. 1984;61(2):159–172. doi: 10.1007/BF00222493. [DOI] [PubMed] [Google Scholar]
- Bing D. H., Cory M., Fenton J. W., 2nd Exo-site affinity labeling of human thrombins. Similar labeling on the A chain and B chain/fragments of clotting alpha- and nonclotting gamma/beta-thrombins. J Biol Chem. 1977 Nov 25;252(22):8027–8034. [PubMed] [Google Scholar]
- Bode W., Turk D., Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci. 1992 Apr;1(4):426–471. doi: 10.1002/pro.5560010402. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Brass L. F. Homologous desensitization of HEL cell thrombin receptors. Distinguishable roles for proteolysis and phosphorylation. J Biol Chem. 1992 Mar 25;267(9):6044–6050. [PubMed] [Google Scholar]
- Braun P. J., Hofsteenge J., Chang J. Y., Stone S. R. Preparation and characterization of proteolyzed forms of human alpha-thrombin. Thromb Res. 1988 Apr 15;50(2):273–283. doi: 10.1016/0049-3848(88)90228-9. [DOI] [PubMed] [Google Scholar]
- Connolly T. M., Condra C., Feng D. M., Cook J. J., Stranieri M. T., Reilly C. F., Nutt R. F., Gould R. J. Species variability in platelet and other cellular responsiveness to thrombin receptor-derived peptides. Thromb Haemost. 1994 Oct;72(4):627–633. [PubMed] [Google Scholar]
- Fenton J. W., 2nd, Fasco M. J., Stackrow A. B. Human thrombins. Production, evaluation, and properties of alpha-thrombin. J Biol Chem. 1977 Jun 10;252(11):3587–3598. [PubMed] [Google Scholar]
- Fenton J. W., 2nd, Olson T. A., Zabinski M. P., Wilner G. D. Anion-binding exosite of human alpha-thrombin and fibrin(ogen) recognition. Biochemistry. 1988 Sep 6;27(18):7106–7112. doi: 10.1021/bi00418a066. [DOI] [PubMed] [Google Scholar]
- Ferrell J. E., Jr, Martin G. S. Tyrosine-specific protein phosphorylation is regulated by glycoprotein IIb-IIIa in platelets. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2234–2238. doi: 10.1073/pnas.86.7.2234. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fox J. E. Transmembrane signaling across the platelet integrin glycoprotein IIb-IIIa. Ann N Y Acad Sci. 1994 Apr 18;714:75–87. doi: 10.1111/j.1749-6632.1994.tb12032.x. [DOI] [PubMed] [Google Scholar]
- Gerszten R. E., Chen J., Ishii M., Ishii K., Wang L., Nanevicz T., Turck C. W., Vu T. K., Coughlin S. R. Specificity of the thrombin receptor for agonist peptide is defined by its extracellular surface. Nature. 1994 Apr 14;368(6472):648–651. doi: 10.1038/368648a0. [DOI] [PubMed] [Google Scholar]
- Goodwin C. A., Wheeler-Jones C. P., Kakkar V. V., Deadman J. J., Authi K. S., Scully M. F. Thrombin receptor activating peptide does not stimulate platelet procoagulant activity. Biochem Biophys Res Commun. 1994 Jul 15;202(1):321–327. doi: 10.1006/bbrc.1994.1930. [DOI] [PubMed] [Google Scholar]
- Gralnick H. R., Williams S., McKeown L. P., Hansmann K., Fenton J. W., 2nd, Krutzsch H. High-affinity alpha-thrombin binding to platelet glycoprotein Ib alpha: identification of two binding domains. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6334–6338. doi: 10.1073/pnas.91.14.6334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gronke R. S., Bergman B. L., Baker J. B. Thrombin interaction with platelets. Influence of a platelet protease nexin. J Biol Chem. 1987 Mar 5;262(7):3030–3036. [PubMed] [Google Scholar]
- Gronke R. S., Knauer D. J., Veeraraghavan S., Baker J. B. A form of protease nexin I is expressed on the platelet surface during platelet activation. Blood. 1989 Feb;73(2):472–478. [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Handa M., Titani K., Holland L. Z., Roberts J. R., Ruggeri Z. M. The von Willebrand factor-binding domain of platelet membrane glycoprotein Ib. Characterization by monoclonal antibodies and partial amino acid sequence analysis of proteolytic fragments. J Biol Chem. 1986 Sep 25;261(27):12579–12585. [PubMed] [Google Scholar]
- Heusel J. W., Wesselschmidt R. L., Shresta S., Russell J. H., Ley T. J. Cytotoxic lymphocytes require granzyme B for the rapid induction of DNA fragmentation and apoptosis in allogeneic target cells. Cell. 1994 Mar 25;76(6):977–987. doi: 10.1016/0092-8674(94)90376-x. [DOI] [PubMed] [Google Scholar]
- Ishii K., Hein L., Kobilka B., Coughlin S. R. Kinetics of thrombin receptor cleavage on intact cells. Relation to signaling. J Biol Chem. 1993 May 5;268(13):9780–9786. [PubMed] [Google Scholar]
- Jalink K., Moolenaar W. H. Thrombin receptor activation causes rapid neural cell rounding and neurite retraction independent of classic second messengers. J Cell Biol. 1992 Jul;118(2):411–419. doi: 10.1083/jcb.118.2.411. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jenkins A. L., Bootman M. D., Berridge M. J., Stone S. R. Differences in intracellular calcium signaling after activation of the thrombin receptor by thrombin and agonist peptide in osteoblast-like cells. J Biol Chem. 1994 Jun 24;269(25):17104–17110. [PubMed] [Google Scholar]
- Jenne D. E., Tschopp J. Granzymes: a family of serine proteases in granules of cytolytic T lymphocytes. Curr Top Microbiol Immunol. 1989;140:33–47. doi: 10.1007/978-3-642-73911-8_4. [DOI] [PubMed] [Google Scholar]
- Kinlough-Rathbone R. L., Perry D. W., Guccione M. A., Rand M. L., Packham M. A. Degranulation of human platelets by the thrombin receptor peptide SFLLRN: comparison with degranulation by thrombin. Thromb Haemost. 1993 Dec 20;70(6):1019–1023. [PubMed] [Google Scholar]
- Kinlough-Rathbone R. L., Perry D. W., Packham M. A. Contrasting effects of thrombin and the thrombin receptor peptide, SFLLRN, on aggregation and release of 14C-serotonin by human platelets pretreated with chymotrypsin or serratia marcescens protease. Thromb Haemost. 1995 Jan;73(1):122–125. [PubMed] [Google Scholar]
- Kinlough-Rathbone R. L., Rand M. L., Packham M. A. Rabbit and rat platelets do not respond to thrombin receptor peptides that activate human platelets. Blood. 1993 Jul 1;82(1):103–106. [PubMed] [Google Scholar]
- Knauer D. J., Thompson J. A., Cunningham D. D. Protease nexins: cell-secreted proteins that mediate the binding, internalization, and degradation of regulatory serine proteases. J Cell Physiol. 1983 Dec;117(3):385–396. doi: 10.1002/jcp.1041170314. [DOI] [PubMed] [Google Scholar]
- Krähenbühl O., Rey C., Jenne D., Lanzavecchia A., Groscurth P., Carrel S., Tschopp J. Characterization of granzymes A and B isolated from granules of cloned human cytotoxic T lymphocytes. J Immunol. 1988 Nov 15;141(10):3471–3477. [PubMed] [Google Scholar]
- Levine L. Alpha-thrombin and trypsin use different receptors to stimulate arachidonic acid metabolism. Prostaglandins. 1994 Jun;47(6):437–449. doi: 10.1016/0090-6980(94)90044-2. [DOI] [PubMed] [Google Scholar]
- Lipfert L., Haimovich B., Schaller M. D., Cobb B. S., Parsons J. T., Brugge J. S. Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol. 1992 Nov;119(4):905–912. doi: 10.1083/jcb.119.4.905. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu L. W., Vu T. K., Esmon C. T., Coughlin S. R. The region of the thrombin receptor resembling hirudin binds to thrombin and alters enzyme specificity. J Biol Chem. 1991 Sep 15;266(26):16977–16980. [PubMed] [Google Scholar]
- Masson D., Tschopp J. A family of serine esterases in lytic granules of cytolytic T lymphocytes. Cell. 1987 Jun 5;49(5):679–685. doi: 10.1016/0092-8674(87)90544-7. [DOI] [PubMed] [Google Scholar]
- Molino M., Blanchard N., Belmonte E., Tarver A. P., Abrams C., Hoxie J. A., Cerletti C., Brass L. F. Proteolysis of the human platelet and endothelial cell thrombin receptor by neutrophil-derived cathepsin G. J Biol Chem. 1995 May 12;270(19):11168–11175. doi: 10.1074/jbc.270.19.11168. [DOI] [PubMed] [Google Scholar]
- Nakamura K., Kimura M., Fenton J. W., 2nd, Andersen T. T., Aviv A. Duality of plasmin effect on cytosolic free calcium in human platelets. Am J Physiol. 1995 Apr;268(4 Pt 1):C958–C967. doi: 10.1152/ajpcell.1995.268.4.C958. [DOI] [PubMed] [Google Scholar]
- Niclou S., Suidan H. S., Brown-Luedi M., Monard D. Expression of the thrombin receptor mRNA in rat brain. Cell Mol Biol (Noisy-le-grand) 1994 May;40(3):421–428. [PubMed] [Google Scholar]
- Noé G., Hofsteenge J., Rovelli G., Stone S. R. The use of sequence-specific antibodies to identify a secondary binding site in thrombin. J Biol Chem. 1988 Aug 25;263(24):11729–11735. [PubMed] [Google Scholar]
- Nystedt S., Emilsson K., Wahlestedt C., Sundelin J. Molecular cloning of a potential proteinase activated receptor. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9208–9212. doi: 10.1073/pnas.91.20.9208. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Parry M. A., Stone S. R., Hofsteenge J., Jackman M. P. Evidence for common structural changes in thrombin induced by active-site or exosite binding. Biochem J. 1993 Mar 15;290(Pt 3):665–670. doi: 10.1042/bj2900665. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Pejler G., Karlström A. Thrombin is inactivated by mast cell secretory granule chymase. J Biol Chem. 1993 Jun 5;268(16):11817–11822. [PubMed] [Google Scholar]
- Pidard D., Renesto P., Berndt M. C., Rabhi S., Clemetson K. J., Chignard M. Neutrophil proteinase cathepsin G is proteolytically active on the human platelet glycoprotein Ib-IX receptor: characterization of the cleavage sites within the glycoprotein Ib alpha subunit. Biochem J. 1994 Oct 15;303(Pt 2):489–498. doi: 10.1042/bj3030489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Poe M., Bennett C. D., Biddison W. E., Blake J. T., Norton G. P., Rodkey J. A., Sigal N. H., Turner R. V., Wu J. K., Zweerink H. J. Human cytotoxic lymphocyte tryptase. Its purification from granules and the characterization of inhibitor and substrate specificity. J Biol Chem. 1988 Sep 15;263(26):13215–13222. [PubMed] [Google Scholar]
- Rasmussen U. B., Gachet C., Schlesinger Y., Hanau D., Ohlmann P., Van Obberghen-Schilling E., Pouysségur J., Cazenave J. P., Pavirani A. A peptide ligand of the human thrombin receptor antagonizes alpha-thrombin and partially activates platelets. J Biol Chem. 1993 Jul 5;268(19):14322–14328. [PubMed] [Google Scholar]
- Rasmussen U. B., Vouret-Craviari V., Jallat S., Schlesinger Y., Pagès G., Pavirani A., Lecocq J. P., Pouysségur J., Van Obberghen-Schilling E. cDNA cloning and expression of a hamster alpha-thrombin receptor coupled to Ca2+ mobilization. FEBS Lett. 1991 Aug 19;288(1-2):123–128. doi: 10.1016/0014-5793(91)81017-3. [DOI] [PubMed] [Google Scholar]
- Rydel T. J., Ravichandran K. G., Tulinsky A., Bode W., Huber R., Roitsch C., Fenton J. W., 2nd The structure of a complex of recombinant hirudin and human alpha-thrombin. Science. 1990 Jul 20;249(4966):277–280. doi: 10.1126/science.2374926. [DOI] [PubMed] [Google Scholar]
- Scarborough R. M., Naughton M. A., Teng W., Hung D. T., Rose J., Vu T. K., Wheaton V. I., Turck C. W., Coughlin S. R. Tethered ligand agonist peptides. Structural requirements for thrombin receptor activation reveal mechanism of proteolytic unmasking of agonist function. J Biol Chem. 1992 Jul 5;267(19):13146–13149. [PubMed] [Google Scholar]
- Selak M. A. Cathepsin G and thrombin: evidence for two different platelet receptors. Biochem J. 1994 Jan 15;297(Pt 2):269–275. doi: 10.1042/bj2970269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Shankar R., de la Motte C. A., Poptic E. J., DiCorleto P. E. Thrombin receptor-activating peptides differentially stimulate platelet-derived growth factor production, monocytic cell adhesion, and E-selectin expression in human umbilical vein endothelial cells. J Biol Chem. 1994 May 13;269(19):13936–13941. [PubMed] [Google Scholar]
- Sheehan J. P., Wu Q., Tollefsen D. M., Sadler J. E. Mutagenesis of thrombin selectively modulates inhibition by serpins heparin cofactor II and antithrombin III. Interaction with the anion-binding exosite determines heparin cofactor II specificity. J Biol Chem. 1993 Feb 15;268(5):3639–3645. [PubMed] [Google Scholar]
- Shi L., Kam C. M., Powers J. C., Aebersold R., Greenberg A. H. Purification of three cytotoxic lymphocyte granule serine proteases that induce apoptosis through distinct substrate and target cell interactions. J Exp Med. 1992 Dec 1;176(6):1521–1529. doi: 10.1084/jem.176.6.1521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Soifer S. J., Peters K. G., O'Keefe J., Coughlin S. R. Disparate temporal expression of the prothrombin and thrombin receptor genes during mouse development. Am J Pathol. 1994 Jan;144(1):60–69. [PMC free article] [PubMed] [Google Scholar]
- Sommer J., Meyhack B., Rovelli G., Buergi R., Monard D. Synthesis of glia-derived nexin in yeast. Gene. 1989 Dec 28;85(2):453–459. doi: 10.1016/0378-1119(89)90439-3. [DOI] [PubMed] [Google Scholar]
- Stone S. R., Hofsteenge J. Kinetics of the inhibition of thrombin by hirudin. Biochemistry. 1986 Aug 12;25(16):4622–4628. doi: 10.1021/bi00364a025. [DOI] [PubMed] [Google Scholar]
- Stone S. R., Nick H., Hofsteenge J., Monard D. Glial-derived neurite-promoting factor is a slow-binding inhibitor of trypsin, thrombin, and urokinase. Arch Biochem Biophys. 1987 Jan;252(1):237–244. doi: 10.1016/0003-9861(87)90028-2. [DOI] [PubMed] [Google Scholar]
- Suidan H. S., Bouvier J., Schaerer E., Stone S. R., Monard D., Tschopp J. Granzyme A released upon stimulation of cytotoxic T lymphocytes activates the thrombin receptor on neuronal cells and astrocytes. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8112–8116. doi: 10.1073/pnas.91.17.8112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suidan H. S., Stone S. R., Hemmings B. A., Monard D. Thrombin causes neurite retraction in neuronal cells through activation of cell surface receptors. Neuron. 1992 Feb;8(2):363–375. doi: 10.1016/0896-6273(92)90302-t. [DOI] [PubMed] [Google Scholar]
- Tapparelli C., Metternich R., Ehrhardt C., Zurini M., Claeson G., Scully M. F., Stone S. R. In vitro and in vivo characterization of a neutral boron-containing thrombin inhibitor. J Biol Chem. 1993 Mar 5;268(7):4734–4741. [PubMed] [Google Scholar]
- Tesfamariam B. Distinct receptors and signaling pathways in alpha-thrombin- and thrombin receptor peptide-induced vascular contractions. Circ Res. 1994 May;74(5):930–936. doi: 10.1161/01.res.74.5.930. [DOI] [PubMed] [Google Scholar]
- Vassallo R. R., Jr, Kieber-Emmons T., Cichowski K., Brass L. F. Structure-function relationships in the activation of platelet thrombin receptors by receptor-derived peptides. J Biol Chem. 1992 Mar 25;267(9):6081–6085. [PubMed] [Google Scholar]
- Vouret-Craviari V., Van Obberghen-Schilling E., Rasmussen U. B., Pavirani A., Lecocq J. P., Pouysségur J. Synthetic alpha-thrombin receptor peptides activate G protein-coupled signaling pathways but are unable to induce mitogenesis. Mol Biol Cell. 1992 Jan;3(1):95–102. doi: 10.1091/mbc.3.1.95. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vouret-Craviari V., Van Obberghen-Schilling E., Scimeca J. C., Van Obberghen E., Pouysségur J. Differential activation of p44mapk (ERK1) by alpha-thrombin and thrombin-receptor peptide agonist. Biochem J. 1993 Jan 1;289(Pt 1):209–214. doi: 10.1042/bj2890209. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vu T. K., Hung D. T., Wheaton V. I., Coughlin S. R. Molecular cloning of a functional thrombin receptor reveals a novel proteolytic mechanism of receptor activation. Cell. 1991 Mar 22;64(6):1057–1068. doi: 10.1016/0092-8674(91)90261-v. [DOI] [PubMed] [Google Scholar]
- Vu T. K., Wheaton V. I., Hung D. T., Charo I., Coughlin S. R. Domains specifying thrombin-receptor interaction. Nature. 1991 Oct 17;353(6345):674–677. doi: 10.1038/353674a0. [DOI] [PubMed] [Google Scholar]
- Weinstein J. R., Gold S. J., Cunningham D. D., Gall C. M. Cellular localization of thrombin receptor mRNA in rat brain: expression by mesencephalic dopaminergic neurons and codistribution with prothrombin mRNA. J Neurosci. 1995 Apr;15(4):2906–2919. doi: 10.1523/JNEUROSCI.15-04-02906.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wicki A. N., Clemetson J. M., Steiner B., Schnippering W., Clemetson K. J. Isolation and characterization of glycoprotein Ib. Methods Enzymol. 1992;215:276–288. doi: 10.1016/0076-6879(92)15070-s. [DOI] [PubMed] [Google Scholar]
- Wicki A. N., Clemetson K. J. Structure and function of platelet membrane glycoproteins Ib and V. Effects of leukocyte elastase and other proteases on platelets response to von Willebrand factor and thrombin. Eur J Biochem. 1985 Nov 15;153(1):1–11. doi: 10.1111/j.1432-1033.1985.tb09259.x. [DOI] [PubMed] [Google Scholar]
- Wu Q. Y., Sheehan J. P., Tsiang M., Lentz S. R., Birktoft J. J., Sadler J. E. Single amino acid substitutions dissociate fibrinogen-clotting and thrombomodulin-binding activities of human thrombin. Proc Natl Acad Sci U S A. 1991 Aug 1;88(15):6775–6779. doi: 10.1073/pnas.88.15.6775. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wu Q., Tsiang M., Sadler J. E. Localization of the single-stranded DNA binding site in the thrombin anion-binding exosite. J Biol Chem. 1992 Dec 5;267(34):24408–24412. [PubMed] [Google Scholar]
- Zhong C., Hayzer D. J., Corson M. A., Runge M. S. Molecular cloning of the rat vascular smooth muscle thrombin receptor. Evidence for in vitro regulation by basic fibroblast growth factor. J Biol Chem. 1992 Aug 25;267(24):16975–16979. [PubMed] [Google Scholar]