Abstract
Collagen is most abundant in animal tissues as very long fibrils with a characteristic axial periodic structure. The fibrils provide the major biomechanical scaffold for cell attachment and anchorage of macromolecules, allowing the shape and form of tissues to be defined and maintained. How the fibrils are formed from their monomeric precursors is the primary concern of this review. Collagen fibril formation is basically a self-assembly process (i.e. one which is to a large extent determined by the intrinsic properties of the collagen molecules themselves) but it is also sensitive to cell-mediated regulation, particularly in young or healing tissues. Recent attention has been focused on "early fibrils' or "fibril segments' of approximately 10 microns in length which appear to be intermediates in the formation of mature fibrils that can grow to be hundreds of micrometers in length. Data from several laboratories indicate that these early fibrils can be unipolar (with all molecules pointing in the same direction) or bipolar (in which the orientation of collagen molecules reverses at a single location along the fibril). The occurrence of such early fibrils has major implications for tissue morphogenesis and repair. In this article we review the current understanding of the origin of unipolar and bipolar fibrils, and how mature fibrils are assembled from early fibrils. We include preliminary evidence from invertebrates which suggests that the principles for bipolar fibril assembly were established at least 500 million years ago.
Full Text
The Full Text of this article is available as a PDF (650.1 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bard J. B., Chapman J. A. Diameters of collagen fibrils grown in vitro. Nat New Biol. 1973 Nov 21;246(151):83–84. doi: 10.1038/newbio246083a0. [DOI] [PubMed] [Google Scholar]
- Birk D. E., Fitch J. M., Babiarz J. P., Doane K. J., Linsenmayer T. F. Collagen fibrillogenesis in vitro: interaction of types I and V collagen regulates fibril diameter. J Cell Sci. 1990 Apr;95(Pt 4):649–657. doi: 10.1242/jcs.95.4.649. [DOI] [PubMed] [Google Scholar]
- Birk D. E., Fitch J. M., Linsenmayer T. F. Organization of collagen types I and V in the embryonic chicken cornea. Invest Ophthalmol Vis Sci. 1986 Oct;27(10):1470–1477. [PubMed] [Google Scholar]
- Birk D. E., Nurminskaya M. V., Zycband E. I. Collagen fibrillogenesis in situ: fibril segments undergo post-depositional modifications resulting in linear and lateral growth during matrix development. Dev Dyn. 1995 Mar;202(3):229–243. doi: 10.1002/aja.1002020303. [DOI] [PubMed] [Google Scholar]
- Birk D. E., Trelstad R. L. Extracellular compartments in tendon morphogenesis: collagen fibril, bundle, and macroaggregate formation. J Cell Biol. 1986 Jul;103(1):231–240. doi: 10.1083/jcb.103.1.231. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birk D. E., Zycband E. I., Winkelmann D. A., Trelstad R. L. Collagen fibrillogenesis in situ: fibril segments are intermediates in matrix assembly. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4549–4553. doi: 10.1073/pnas.86.12.4549. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bruns R. R. Supramolecular structure of polymorphic collagen fibrils. J Cell Biol. 1976 Mar;68(3):521–538. doi: 10.1083/jcb.68.3.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Capaldi M. J., Chapman J. A. The C-terminal extrahelical peptide of type I collagen and its role in fibrillogenesis in vitro. Biopolymers. 1982 Nov;21(11):2291–2313. doi: 10.1002/bip.360211115. [DOI] [PubMed] [Google Scholar]
- Chapman J. A. The regulation of size and form in the assembly of collagen fibrils in vivo. Biopolymers. 1989 Aug;28(8):1367–1382. doi: 10.1002/bip.360280803. [DOI] [PubMed] [Google Scholar]
- Chapman J. A., Tzaphlidou M., Meek K. M., Kadler K. E. The collagen fibril--a model system for studying the staining and fixation of a protein. Electron Microsc Rev. 1990;3(1):143–182. doi: 10.1016/0892-0354(90)90018-n. [DOI] [PubMed] [Google Scholar]
- Doyle B. B., Hukins D. W., Hulmes D. J., Miller A., Woodhead-Galloway J. Collagen polymorphism: its origins in the amino acid sequence. J Mol Biol. 1975 Jan 5;91(1):79–99. doi: 10.1016/0022-2836(75)90373-3. [DOI] [PubMed] [Google Scholar]
- Erlinger R., Welsch U., Scott J. E. Ultrastructural and biochemical observations on proteoglycans and collagen in the mutable connective tissue of the feather star Antedon bifida (Echinodermata, Crinoidea). J Anat. 1993 Aug;183(Pt 1):1–11. [PMC free article] [PubMed] [Google Scholar]
- Fertala A., Sieron A. L., Ganguly A., Li S. W., Ala-Kokko L., Anumula K. R., Prockop D. J. Synthesis of recombinant human procollagen II in a stably transfected tumour cell line (HT1080). Biochem J. 1994 Feb 15;298(Pt 1):31–37. doi: 10.1042/bj2980031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fertala A., Sieron A. L., Hojima Y., Ganguly A., Prockop D. J. Self-assembly into fibrils of collagen II by enzymic cleavage of recombinant procollagen II. Lag period, critical concentration, and morphology of fibrils differ from collagen I. J Biol Chem. 1994 Apr 15;269(15):11584–11589. [PubMed] [Google Scholar]
- Fleischmajer R., MacDonald E. D., Perlish J. S., Burgeson R. E., Fisher L. W. Dermal collagen fibrils are hybrids of type I and type III collagen molecules. J Struct Biol. 1990 Oct-Dec;105(1-3):162–169. doi: 10.1016/1047-8477(90)90110-x. [DOI] [PubMed] [Google Scholar]
- Fleischmajer R., Olsen B. R., Timpl R., Perlish J. S., Lovelace O. Collagen fibril formation during embryogenesis. Proc Natl Acad Sci U S A. 1983 Jun;80(11):3354–3358. doi: 10.1073/pnas.80.11.3354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fleischmajer R., Perlish J. S., Burgeson R. E., Shaikh-Bahai F., Timpl R. Type I and type III collagen interactions during fibrillogenesis. Ann N Y Acad Sci. 1990;580:161–175. doi: 10.1111/j.1749-6632.1990.tb17927.x. [DOI] [PubMed] [Google Scholar]
- Fleischmajer R., Perlish J. S., Olsen B. R. Amino and carboxyl propeptides in bone collagen fibrils during embryogenesis. Cell Tissue Res. 1987 Jan;247(1):105–109. doi: 10.1007/BF00216552. [DOI] [PubMed] [Google Scholar]
- Fleischmajer R., Perlish J. S., Olsen B. R. The carboxylpropeptide of type I procollagen in skin fibrillogenesis. J Invest Dermatol. 1987 Aug;89(2):212–215. doi: 10.1111/1523-1747.ep12470949. [DOI] [PubMed] [Google Scholar]
- Fleischmajer R., Perlish J. S., Timpl R., Olsen B. R. Procollagen intermediates during tendon fibrillogenesis. J Histochem Cytochem. 1988 Nov;36(11):1425–1432. doi: 10.1177/36.11.3049791. [DOI] [PubMed] [Google Scholar]
- GROSS J., KIRK D. The heat precipitation of collagen from neutral salt solutions: some rate-regulating factors. J Biol Chem. 1958 Aug;233(2):355–360. [PubMed] [Google Scholar]
- Gelman R. A., Piez K. A. Collagen fibril formation in vitro. A quasielastic light-scattering study of early stages. J Biol Chem. 1980 Sep 10;255(17):8098–8102. [PubMed] [Google Scholar]
- George A., Veis A. FTIRS in H2O demonstrates that collagen monomers undergo a conformational transition prior to thermal self-assembly in vitro. Biochemistry. 1991 Mar 5;30(9):2372–2377. doi: 10.1021/bi00223a011. [DOI] [PubMed] [Google Scholar]
- Har-el R., Tanzer M. L. Extracellular matrix. 3: Evolution of the extracellular matrix in invertebrates. FASEB J. 1993 Sep;7(12):1115–1123. doi: 10.1096/fasebj.7.12.8375610. [DOI] [PubMed] [Google Scholar]
- Haworth R. A., Chapman J. A. A study of the growth of normal and iodinated collagen fibrils in vitro using electron microscope autoradiography. Biopolymers. 1977 Sep;16(9):1895–1906. doi: 10.1002/bip.1977.360160906. [DOI] [PubMed] [Google Scholar]
- Helseth D. L., Jr, Veis A. Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide. J Biol Chem. 1981 Jul 25;256(14):7118–7128. [PubMed] [Google Scholar]
- Holmes D. F., Chapman J. A. Axial mass distributions of collagen fibrils grown in vitro: results for the end regions of early fibrils. Biochem Biophys Res Commun. 1979 Apr 27;87(4):993–999. doi: 10.1016/s0006-291x(79)80005-4. [DOI] [PubMed] [Google Scholar]
- Holmes D. F., Chapman J. A., Prockop D. J., Kadler K. E. Growing tips of type I collagen fibrils formed in vitro are near-paraboloidal in shape, implying a reciprocal relationship between accretion and diameter. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9855–9859. doi: 10.1073/pnas.89.20.9855. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Holmes D. F., Lowe M. P., Chapman J. A. Vertebrate (chick) collagen fibrils formed in vivo can exhibit a reversal in molecular polarity. J Mol Biol. 1994 Jan 7;235(1):80–83. doi: 10.1016/s0022-2836(05)80016-6. [DOI] [PubMed] [Google Scholar]
- Holmes D. F., Mould A. P., Chapman J. A. Morphology of sheet-like assemblies of pN-collagen, pC-collagen and procollagen studied by scanning transmission electron microscopy mass measurements. J Mol Biol. 1991 Jul 5;220(1):111–123. doi: 10.1016/0022-2836(91)90385-j. [DOI] [PubMed] [Google Scholar]
- Holmes D. F., Watson R. B., Steinmann B., Kadler K. E. Ehlers-Danlos syndrome type VIIB. Morphology of type I collagen fibrils formed in vivo and in vitro is determined by the conformation of the retained N-propeptide. J Biol Chem. 1993 Jul 25;268(21):15758–15765. [PubMed] [Google Scholar]
- Hulmes D. J. A possible mechanism for the regulation of collagen fibril diameter in vivo. Coll Relat Res. 1983 Jul;3(4):317–321. doi: 10.1016/s0174-173x(83)80013-2. [DOI] [PubMed] [Google Scholar]
- Hulmes D. J., Miller A., White S. W., Doyle B. B. Interpretation of the meridional X-ray diffraction pattern from collagen fibres in terms of the known amino acid sequence. J Mol Biol. 1977 Mar 15;110(4):643–666. doi: 10.1016/s0022-2836(77)80082-x. [DOI] [PubMed] [Google Scholar]
- Kadler K. E., Hojima Y., Prockop D. J. Assembly of collagen fibrils de novo by cleavage of the type I pC-collagen with procollagen C-proteinase. Assay of critical concentration demonstrates that collagen self-assembly is a classical example of an entropy-driven process. J Biol Chem. 1987 Nov 15;262(32):15696–15701. [PubMed] [Google Scholar]
- Kadler K. E., Hojima Y., Prockop D. J. Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers. J Biol Chem. 1988 Jul 25;263(21):10517–10523. [PubMed] [Google Scholar]
- Kadler K. E., Hojima Y., Prockop D. J. Collagen fibrils in vitro grow from pointed tips in the C- to N-terminal direction. Biochem J. 1990 Jun 1;268(2):339–343. doi: 10.1042/bj2680339. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kadler K. E., Hulmes D. J., Hojima Y., Prockop D. J. Assembly of type I collagen fibrils de novo by the specific enzymic cleavage of pC collagen. The fibrils formed at about 37 degrees C are similar in diameter, roundness, and apparent flexibility to the collagen fibrils seen in connective tissue. Ann N Y Acad Sci. 1990;580:214–224. doi: 10.1111/j.1749-6632.1990.tb17930.x. [DOI] [PubMed] [Google Scholar]
- Kadler K. Extracellular matrix 1: Fibril-forming collagens. Protein Profile. 1995;2(5):491–619. [PubMed] [Google Scholar]
- Kariya Y., Watabe S., Ochiai Y., Murata K., Hashimoto K. Glycosaminoglycan involved in the cation-induced change of body wall structure of sea cucumber Stichopus japonicus. Connect Tissue Res. 1990;25(2):149–159. doi: 10.3109/03008209009006989. [DOI] [PubMed] [Google Scholar]
- Kessler E., Takahara K., Biniaminov L., Brusel M., Greenspan D. S. Bone morphogenetic protein-1: the type I procollagen C-proteinase. Science. 1996 Jan 19;271(5247):360–362. doi: 10.1126/science.271.5247.360. [DOI] [PubMed] [Google Scholar]
- Leibovich S. J., Weiss J. B. Electron microscope studies of the effects of endo- and exopeptidase digestion on tropocollagen. A novel concept of the role of terminal regions in fibrillogenesis. Biochim Biophys Acta. 1970 Sep 29;214(3):445–454. doi: 10.1016/0005-2795(70)90303-x. [DOI] [PubMed] [Google Scholar]
- Liu X. H., Scott P. G., Otter A., Kotovych G. Solution conformation of the type I collagen alpha-2 chain telopeptides studied by 1H and 13C NMR spectroscopy. J Biomol Struct Dyn. 1990 Aug;8(1):63–80. doi: 10.1080/07391102.1990.10507790. [DOI] [PubMed] [Google Scholar]
- Matsumura T., Shinmei M., Nagai Y. Disaggregation of connective tissue: preparation of fibrous components from sea cucumber body wall and calf skin. J Biochem. 1973 Jan;73(1):155–162. [PubMed] [Google Scholar]
- Meek K. M., Chapman J. A., Hardcastle R. A. The staining pattern of collagen fibrils. Improved correlation with sequence data. J Biol Chem. 1979 Nov 10;254(21):10710–10714. [PubMed] [Google Scholar]
- Merrilees M. J., Tiang K. M., Scott L. Changes in collagen fibril diameters across artery walls including a correlation with glycosaminoglycan content. Connect Tissue Res. 1987;16(3):237–257. doi: 10.3109/03008208709006979. [DOI] [PubMed] [Google Scholar]
- Miyahara M., Hayashi K., Berger J., Tanzawa K., Njieha F. K., Trelstad R. L., Prockop D. J. Formation of collagen fibrils by enzymic cleavage of precursors of type I collagen in vitro. J Biol Chem. 1984 Aug 10;259(15):9891–9898. [PubMed] [Google Scholar]
- Miyahara M., Njieha F. K., Prockop D. J. Formation of collagen fibrils in vitro by cleavage of procollagen with procollagen proteinases. J Biol Chem. 1982 Jul 25;257(14):8442–8448. [PubMed] [Google Scholar]
- Mould A. P., Hulmes D. J., Holmes D. F., Cummings C., Sear C. H., Chapman J. A. D-periodic assemblies of type I procollagen. J Mol Biol. 1990 Feb 5;211(3):581–594. doi: 10.1016/0022-2836(90)90267-P. [DOI] [PubMed] [Google Scholar]
- Nishiyama T., McDonough A. M., Bruns R. R., Burgeson R. E. Type XII and XIV collagens mediate interactions between banded collagen fibers in vitro and may modulate extracellular matrix deformability. J Biol Chem. 1994 Nov 11;269(45):28193–28199. [PubMed] [Google Scholar]
- Otter A., Kotovych G., Scott P. G. Solution conformation of the type I collagen alpha-1 chain N-telopeptide studied by 1H NMR spectroscopy. Biochemistry. 1989 Oct 3;28(20):8003–8010. doi: 10.1021/bi00446a006. [DOI] [PubMed] [Google Scholar]
- Otter A., Scott P. G., Kotovych G. Type I collagen alpha-1 chain C-telopeptide: solution structure determined by 600-MHz proton NMR spectroscopy and implications for its role in collagen fibrillogenesis. Biochemistry. 1988 May 17;27(10):3560–3567. doi: 10.1021/bi00410a006. [DOI] [PubMed] [Google Scholar]
- Parkinson J., Kadler K. E., Brass A. Simple physical model of collagen fibrillogenesis based on diffusion limited aggregation. J Mol Biol. 1995 Apr 7;247(4):823–831. doi: 10.1006/jmbi.1994.0182. [DOI] [PubMed] [Google Scholar]
- Parkinson J, Kadler KE, Brass A. Self-assembly of rodlike particles in two dimensions: A simple model for collagen fibrillogenesis. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1994 Oct;50(4):2963–2966. doi: 10.1103/physreve.50.2963. [DOI] [PubMed] [Google Scholar]
- Parry D. A., Craig A. S. Electron microscope evidence for an 80 A unit in collagen fibrils. Nature. 1979 Nov 8;282(5735):213–215. doi: 10.1038/282213a0. [DOI] [PubMed] [Google Scholar]
- Prockop D. J., Kivirikko K. I. Collagens: molecular biology, diseases, and potentials for therapy. Annu Rev Biochem. 1995;64:403–434. doi: 10.1146/annurev.bi.64.070195.002155. [DOI] [PubMed] [Google Scholar]
- Romanic A. M., Adachi E., Hojima Y., Engel J., Prockop D. J. Polymerization of pNcollagen I and copolymerization of pNcollagen I with collagen I. A kinetic, thermodynamic, and morphologic study. J Biol Chem. 1992 Nov 5;267(31):22265–22271. [PubMed] [Google Scholar]
- Romanic A. M., Adachi E., Kadler K. E., Hojima Y., Prockop D. J. Copolymerization of pNcollagen III and collagen I. pNcollagen III decreases the rate of incorporation of collagen I into fibrils, the amount of collagen I incorporated, and the diameter of the fibrils formed. J Biol Chem. 1991 Jul 5;266(19):12703–12709. [PubMed] [Google Scholar]
- Scott J. E. Collagen--proteoglycan interactions. Localization of proteoglycans in tendon by electron microscopy. Biochem J. 1980 Jun 1;187(3):887–891. doi: 10.1042/bj1870887. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. E., Haigh M. 'Small'-proteoglycan:collagen interactions: keratan sulphate proteoglycan associates with rabbit corneal collagen fibrils at the 'a' and 'c' bands. Biosci Rep. 1985 Sep;5(9):765–774. doi: 10.1007/BF01119875. [DOI] [PubMed] [Google Scholar]
- Scott J. E., Haigh M. Identification of specific binding sites for keratan sulphate proteoglycans and chondroitin-dermatan sulphate proteoglycans on collagen fibrils in cornea by the use of cupromeronic blue in 'critical-electrolyte-concentration' techniques. Biochem J. 1988 Jul 15;253(2):607–610. doi: 10.1042/bj2530607. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. E., Orford C. R. Dermatan sulphate-rich proteoglycan associates with rat tail-tendon collagen at the d band in the gap region. Biochem J. 1981 Jul 1;197(1):213–216. doi: 10.1042/bj1970213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. E., Orford C. R., Hughes E. W. Proteoglycan-collagen arrangements in developing rat tail tendon. An electron microscopical and biochemical investigation. Biochem J. 1981 Jun 1;195(3):573–581. doi: 10.1042/bj1950573. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. E., Parry D. A. Control of collagen fibril diameters in tissues. Int J Biol Macromol. 1992 Oct;14(5):292–293. doi: 10.1016/s0141-8130(05)80043-1. [DOI] [PubMed] [Google Scholar]
- Scott J. E. Proteoglycan-fibrillar collagen interactions. Biochem J. 1988 Jun 1;252(2):313–323. doi: 10.1042/bj2520313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Scott J. E. The periphery of the developing collagen fibril. Quantitative relationships with dermatan sulphate and other surface-associated species. Biochem J. 1984 Feb 15;218(1):229–233. doi: 10.1042/bj2180229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver D., Miller J., Harrison R., Prockop D. J. Helical model of nucleation and propagation to account for the growth of type I collagen fibrils from symmetrical pointed tips: a special example of self-assembly of rod-like monomers. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9860–9864. doi: 10.1073/pnas.89.20.9860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Silver F. H. A molecular model for linear and lateral growth of type I collagen fibrils. Coll Relat Res. 1982;2(3):219–229. doi: 10.1016/s0174-173x(82)80016-2. [DOI] [PubMed] [Google Scholar]
- Silver F. H. A two step model for lateral growth of collagen fibrils. Coll Relat Res. 1983 May;3(3):167–179. doi: 10.1016/s0174-173x(83)80001-6. [DOI] [PubMed] [Google Scholar]
- Silver F. H., Langley K. H., Trelstad R. L. Type I collagen fibrillogenesis: initiation via reversible linear and lateral growth steps. Biopolymers. 1979 Oct;18(10):2523–2535. doi: 10.1002/bip.1979.360181011. [DOI] [PubMed] [Google Scholar]
- Silver F. H., Trelstad R. L. Linear aggregation and the turbidimetric lag phase: type I collagen fibrillogenesis in vitro. J Theor Biol. 1979 Dec 7;81(3):515–526. doi: 10.1016/0022-5193(79)90049-3. [DOI] [PubMed] [Google Scholar]
- Silver F. H. Type I collagen fibrillogenesis in vitro. Additional evidence for the assembly mechanism. J Biol Chem. 1981 May 25;256(10):4973–4977. [PubMed] [Google Scholar]
- Smith D. S., Wainwright S. A., Baker J., Cayer M. L. Structural features associated with movement and 'catch' of sea-urchin spines. Tissue Cell. 1981;13(2):299–320. doi: 10.1016/0040-8166(81)90007-0. [DOI] [PubMed] [Google Scholar]
- Thurmond F. A., Trotter J. A. Native collagen fibrils from echinoderms are molecularly bipolar. J Mol Biol. 1994 Jan 7;235(1):73–79. doi: 10.1016/s0022-2836(05)80015-4. [DOI] [PubMed] [Google Scholar]
- Trotter J. A., Koob T. J. Collagen and proteoglycan in a sea urchin ligament with mutable mechanical properties. Cell Tissue Res. 1989 Dec;258(3):527–539. doi: 10.1007/BF00218864. [DOI] [PubMed] [Google Scholar]
- Trotter J. A., Thurmond F. A., Koob T. J. Molecular structure and functional morphology of echinoderm collagen fibrils. Cell Tissue Res. 1994 Mar;275(3):451–458. doi: 10.1007/BF00318814. [DOI] [PubMed] [Google Scholar]
- WOOD G. C., KEECH M. K. The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. Biochem J. 1960 Jun;75:588–598. doi: 10.1042/bj0750588. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ward N. P., Hulmes D. J., Chapman J. A. Collagen self-assembly in vitro: electron microscopy of initial aggregates formed during the lag phase. J Mol Biol. 1986 Jul 5;190(1):107–112. doi: 10.1016/0022-2836(86)90079-3. [DOI] [PubMed] [Google Scholar]
- Watson R. B., Wallis G. A., Holmes D. F., Viljoen D., Byers P. H., Kadler K. E. Ehlers Danlos syndrome type VIIB. Incomplete cleavage of abnormal type I procollagen by N-proteinase in vitro results in the formation of copolymers of collagen and partially cleaved pNcollagen that are near circular in cross-section. J Biol Chem. 1992 May 5;267(13):9093–9100. [PubMed] [Google Scholar]
- Watt S. L., Lunstrum G. P., McDonough A. M., Keene D. R., Burgeson R. E., Morris N. P. Characterization of collagen types XII and XIV from fetal bovine cartilage. J Biol Chem. 1992 Oct 5;267(28):20093–20099. [PubMed] [Google Scholar]
- Williams B. R., Gelman R. A., Poppke D. C., Piez K. A. Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. J Biol Chem. 1978 Sep 25;253(18):6578–6585. [PubMed] [Google Scholar]
- Wu J. J., Woods P. E., Eyre D. R. Identification of cross-linking sites in bovine cartilage type IX collagen reveals an antiparallel type II-type IX molecular relationship and type IX to type IX bonding. J Biol Chem. 1992 Nov 15;267(32):23007–23014. [PubMed] [Google Scholar]
- van der Rest M., Garrone R. Collagen family of proteins. FASEB J. 1991 Oct;5(13):2814–2823. [PubMed] [Google Scholar]