Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 15;316(Pt 1):137–142. doi: 10.1042/bj3160137

Organization of Ca2+ stores in myeloid cells: association of SERCA2b and the type-1 inositol-1,4,5-trisphosphate receptor.

C J Favre 1, P Jerström 1, M Foti 1, O Stendhal 1, E Huggler 1, D P Lew 1, K H Krause 1
PMCID: PMC1217313  PMID: 8645196

Abstract

In this study, we have analysed the relationship between Ca2+ pumps and Ins(1,4,5)P3-sensitive Ca2+ channels in myeloid cells. To study whether sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA)-type Ca(2+)-ATPases are responsible for Ca2+ uptake into Ins(1,4,5)P3-sensitive Ca2+ stores, we used the three structurally unrelated inhibitors thapsigargin, 2,5-di-t-butylhydroquinone and cyclopiazonic acid. In HL-60 cells, all three compounds precluded formation of the phosphorylated intermediate of SERCA-type Ca(2+)-ATPases. They also decreased, in parallel, ATP-dependent Ca2+ accumulation and the amount of Ins(1,4,5)P3-releasable Ca2+. Immunoblotting with subtype-directed antibodies demonstrated that HL-60 cells contain the Ca2+ pump SERCA2 (subtype b), and the Ca(2+)-release-channel type-1 Ins(1,4,5)P3 receptor. In subcellular fractionation studies, SERCA2 and type-1 Ins(1,4,5)P3 receptor co-purified. Immunofluorescence studies demonstrated that both type-1 Ins(1,4,5)P3 receptor and SERCA2 were evenly distributed throughout the cell in moving neutrophils. During phagocytosis both proteins translocated to the periphagosomal space. Taken together, our results suggest that in myeloid cells (i) SERCA-type Ca(2+)-ATPases function as Ca2+ pumps of Ins(1,4,5)P3-sensitive Ca2+ stores, and (ii) SERCA2 and type-1 Ins(1,4,5)P3 receptor reside either in the same or two tightly associated subcellular compartments.

Full Text

The Full Text of this article is available as a PDF (439.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anger M., Samuel J. L., Marotte F., Wuytack F., Rappaport L., Lompré A. M. The sarco(endo)plasmic reticulum Ca(2+)-ATPase mRNA isoform, SERCA 3, is expressed in endothelial and epithelial cells in various organs. FEBS Lett. 1993 Nov 8;334(1):45–48. doi: 10.1016/0014-5793(93)81677-r. [DOI] [PubMed] [Google Scholar]
  2. Bode H. P., Eder B., Trautmann M. An investigation on the role of vacuolar-type proton pumps and luminal acidity in calcium sequestration by nonmitochondrial and inositol-1,4,5-trisphosphate-sensitive intracellular calcium stores in clonal insulin-secreting cells. Eur J Biochem. 1994 Jun 15;222(3):869–877. doi: 10.1111/j.1432-1033.1994.tb18934.x. [DOI] [PubMed] [Google Scholar]
  3. Brandl C. J., Green N. M., Korczak B., MacLennan D. H. Two Ca2+ ATPase genes: homologies and mechanistic implications of deduced amino acid sequences. Cell. 1986 Feb 28;44(4):597–607. doi: 10.1016/0092-8674(86)90269-2. [DOI] [PubMed] [Google Scholar]
  4. Burgoyne R. D., Cheek T. R., Morgan A., O'Sullivan A. J., Moreton R. B., Berridge M. J., Mata A. M., Colyer J., Lee A. G., East J. M. Distribution of two distinct Ca2+-ATPase-like proteins and their relationships to the agonist-sensitive calcium store in adrenal chromaffin cells. Nature. 1989 Nov 2;342(6245):72–74. doi: 10.1038/342072a0. [DOI] [PubMed] [Google Scholar]
  5. Burk S. E., Lytton J., MacLennan D. H., Shull G. E. cDNA cloning, functional expression, and mRNA tissue distribution of a third organellar Ca2+ pump. J Biol Chem. 1989 Nov 5;264(31):18561–18568. [PubMed] [Google Scholar]
  6. Demaurex N., Lew D. P., Krause K. H. Cyclopiazonic acid depletes intracellular Ca2+ stores and activates an influx pathway for divalent cations in HL-60 cells. J Biol Chem. 1992 Feb 5;267(4):2318–2324. [PubMed] [Google Scholar]
  7. Favre C. J., Lew D. P., Krause K. H. Rapid heparin-sensitive Ca2+ release following Ca(2+)-ATPase inhibition in intact HL-60 granulocytes. Evidence for Ins(1,4,5)P3-dependent Ca2+ cycling across the membrane of Ca2+ stores. Biochem J. 1994 Aug 15;302(Pt 1):155–162. doi: 10.1042/bj3020155. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gunteski-Hamblin A. M., Greeb J., Shull G. E. A novel Ca2+ pump expressed in brain, kidney, and stomach is encoded by an alternative transcript of the slow-twitch muscle sarcoplasmic reticulum Ca-ATPase gene. Identification of cDNAs encoding Ca2+ and other cation-transporting ATPases using an oligonucleotide probe derived from the ATP-binding site. J Biol Chem. 1988 Oct 15;263(29):15032–15040. [PubMed] [Google Scholar]
  9. Heilmann C., Spamer C., Gerok W. Reaction mechanism of the calcium-transport ATPase in endoplasmic reticulum of rat liver. Demonstration of different reactive forms of the phosphorylated intermediate. J Biol Chem. 1985 Jan 25;260(2):788–794. [PubMed] [Google Scholar]
  10. Heilmann C., Spamer C., Gerok W. The calcium pump in rat liver endoplasmic reticulum. Demonstration of the phosphorylated intermediate. J Biol Chem. 1984 Sep 10;259(17):11139–11144. [PubMed] [Google Scholar]
  11. Heilmann C., Spamer C., Gerok W. The phosphoprotein intermediate of a Ca2+ transport ATPase in rat liver endoplasmic reticulum. Biochem Biophys Res Commun. 1983 Jul 29;114(2):584–592. doi: 10.1016/0006-291x(83)90820-3. [DOI] [PubMed] [Google Scholar]
  12. Islam M. S., Berggren P. O. Mobilization of Ca2+ by thapsigargin and 2,5-di-(t-butyl)-1,4-benzohydroquinone in permeabilized insulin-secreting RINm5F cells: evidence for separate uptake and release compartments in inositol 1,4,5-trisphosphate-sensitive Ca2+ pool. Biochem J. 1993 Jul 15;293(Pt 2):423–429. doi: 10.1042/bj2930423. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Jaconi M. E., Lew D. P., Carpentier J. L., Magnusson K. E., Sjögren M., Stendahl O. Cytosolic free calcium elevation mediates the phagosome-lysosome fusion during phagocytosis in human neutrophils. J Cell Biol. 1990 May;110(5):1555–1564. doi: 10.1083/jcb.110.5.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Khan A. A., Steiner J. P., Klein M. G., Schneider M. F., Snyder S. H. IP3 receptor: localization to plasma membrane of T cells and cocapping with the T cell receptor. Science. 1992 Aug 7;257(5071):815–818. doi: 10.1126/science.1323146. [DOI] [PubMed] [Google Scholar]
  15. Kovács T., Corvazier E., Papp B., Magnier C., Bredoux R., Enyedi A., Sarkadi B., Enouf J. Controlled proteolysis of Ca(2+)-ATPases in human platelet and non-muscle cell membrane vesicles. Evidence for a multi-sarco/endoplasmic reticulum Ca(2+)-ATPase system. J Biol Chem. 1994 Feb 25;269(8):6177–6184. [PubMed] [Google Scholar]
  16. Kume S., Muto A., Aruga J., Nakagawa T., Michikawa T., Furuichi T., Nakade S., Okano H., Mikoshiba K. The Xenopus IP3 receptor: structure, function, and localization in oocytes and eggs. Cell. 1993 May 7;73(3):555–570. doi: 10.1016/0092-8674(93)90142-d. [DOI] [PubMed] [Google Scholar]
  17. Lytton J., MacLennan D. H. Molecular cloning of cDNAs from human kidney coding for two alternatively spliced products of the cardiac Ca2+-ATPase gene. J Biol Chem. 1988 Oct 15;263(29):15024–15031. [PubMed] [Google Scholar]
  18. Lytton J., Westlin M., Hanley M. R. Thapsigargin inhibits the sarcoplasmic or endoplasmic reticulum Ca-ATPase family of calcium pumps. J Biol Chem. 1991 Sep 15;266(26):17067–17071. [PubMed] [Google Scholar]
  19. Nori A., Villa A., Podini P., Witcher D. R., Volpe P. Intracellular Ca2+ stores of rat cerebellum: heterogeneity within and distinction from endoplasmic reticulum. Biochem J. 1993 Apr 1;291(Pt 1):199–204. doi: 10.1042/bj2910199. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Parys J. B., de Smedt H., Missiaen L., Bootman M. D., Sienaert I., Casteels R. Rat basophilic leukemia cells as model system for inositol 1,4,5-trisphosphate receptor IV, a receptor of the type II family: functional comparison and immunological detection. Cell Calcium. 1995 Apr;17(4):239–249. doi: 10.1016/0143-4160(95)90070-5. [DOI] [PubMed] [Google Scholar]
  21. Peterson G. L. A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem. 1977 Dec;83(2):346–356. doi: 10.1016/0003-2697(77)90043-4. [DOI] [PubMed] [Google Scholar]
  22. Robinson I. M., Cheek T. R., Burgoyne R. D. Ca2+ influx induced by the Ca(2+)-ATPase inhibitors 2,5-di-(t-butyl)-1,4-benzohydroquinone and thapsigargin in bovine adrenal chromaffin cells. Biochem J. 1992 Dec 1;288(Pt 2):457–463. doi: 10.1042/bj2880457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Rossier M. F., Putney J. W., Jr The identity of the calcium-storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum ... or both? Trends Neurosci. 1991 Jul;14(7):310–314. doi: 10.1016/0166-2236(91)90143-i. [DOI] [PubMed] [Google Scholar]
  24. Sarkadi B., Enyedi A., Földes-Papp Z., Gárdos G. Molecular characterization of the in situ red cell membrane calcium pump by limited proteolysis. J Biol Chem. 1986 Jul 15;261(20):9552–9557. [PubMed] [Google Scholar]
  25. Spamer C., Heilmann C., Gerok W. Ca2+-activated ATPase in microsomes from human liver. J Biol Chem. 1987 Jun 5;262(16):7782–7789. [PubMed] [Google Scholar]
  26. Stendahl O., Krause K. H., Krischer J., Jerström P., Theler J. M., Clark R. A., Carpentier J. L., Lew D. P. Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science. 1994 Sep 2;265(5177):1439–1441. doi: 10.1126/science.8073285. [DOI] [PubMed] [Google Scholar]
  27. Stewart P. S., MacLennan D. H. Isolation and characterization of tryptic fragments of the adenosine triphosphatase of sarcoplasmic reticulum. J Biol Chem. 1976 Feb 10;251(3):712–719. [PubMed] [Google Scholar]
  28. Sugiyama T., Furuya A., Monkawa T., Yamamoto-Hino M., Satoh S., Ohmori K., Miyawaki A., Hanai N., Mikoshiba K., Hasegawa M. Monoclonal antibodies distinctively recognizing the subtypes of inositol 1,4,5-trisphosphate receptor: application to the studies on inflammatory cells. FEBS Lett. 1994 Nov 7;354(2):149–154. doi: 10.1016/0014-5793(94)01099-4. [DOI] [PubMed] [Google Scholar]
  29. Sugiyama T., Yamamoto-Hino M., Miyawaki A., Furuichi T., Mikoshiba K., Hasegawa M. Subtypes of inositol 1,4,5-trisphosphate receptor in human hematopoietic cell lines: dynamic aspects of their cell-type specific expression. FEBS Lett. 1994 Aug 1;349(2):191–196. doi: 10.1016/0014-5793(94)00662-8. [DOI] [PubMed] [Google Scholar]
  30. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Van Delden C., Favre C., Spät A., Cerny E., Krause K. H., Lew D. P. Purification of an inositol 1,4,5-trisphosphate-binding calreticulin-containing intracellular compartment of HL-60 cells. Biochem J. 1992 Feb 1;281(Pt 3):651–656. doi: 10.1042/bj2810651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Villa A., Sharp A. H., Racchetti G., Podini P., Bole D. G., Dunn W. A., Pozzan T., Snyder S. H., Meldolesi J. The endoplasmic reticulum of Purkinje neuron body and dendrites: molecular identity and specializations for Ca2+ transport. Neuroscience. 1992 Jul;49(2):467–477. doi: 10.1016/0306-4522(92)90111-e. [DOI] [PubMed] [Google Scholar]
  33. Wuytack F., Dode L., Baba-Aissa F., Raeymaekers L. The SERCA3-type of organellar Ca2+ pumps. Biosci Rep. 1995 Oct;15(5):299–306. doi: 10.1007/BF01788362. [DOI] [PubMed] [Google Scholar]
  34. Wuytack F., Eggermont J. A., Raeymaekers L., Plessers L., Casteels R. Antibodies against the non-muscle isoform of the endoplasmic reticulum Ca2(+)-transport ATPase. Biochem J. 1989 Dec 15;264(3):765–769. doi: 10.1042/bj2640765. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Wuytack F., Papp B., Verboomen H., Raeymaekers L., Dode L., Bobe R., Enouf J., Bokkala S., Authi K. S., Casteels R. A sarco/endoplasmic reticulum Ca(2+)-ATPase 3-type Ca2+ pump is expressed in platelets, in lymphoid cells, and in mast cells. J Biol Chem. 1994 Jan 14;269(2):1410–1416. [PubMed] [Google Scholar]
  36. Yamada N., Makino Y., Clark R. A., Pearson D. W., Mattei M. G., Guénet J. L., Ohama E., Fujino I., Miyawaki A., Furuichi T. Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem J. 1994 Sep 15;302(Pt 3):781–790. doi: 10.1042/bj3020781. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Yamamoto-Hino M., Sugiyama T., Hikichi K., Mattei M. G., Hasegawa K., Sekine S., Sakurada K., Miyawaki A., Furuichi T., Hasegawa M. Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors. Receptors Channels. 1994;2(1):9–22. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES