Abstract
The tight interaction between the vitamin biotin and the protein avidin is so strong (Ka approximately 10(15) M-1) that conditions which are usually sufficient for protein denaturation fail to dissociate the avidin-biotin complex. In order to form a reversible interaction between the two biomolecules, we have modified the binding-site tyrosine by nitration, thus reducing the pKa of the phenol group which forms a crucial hydrogen bond with the ureido group of biotin. At relatively low pH values (4-5), the resultant modified forms of avidin bind biotin with a very high association constant ( > 10(9) M-1). The modified avidins are thus capable of supporting stable, long-term binding of biotin or biotinylated macro-molecules. The latter molecules can be detached by increasing the pH of the medium or by introduction of excess levels of biotin at neutral pH. These findings demonstrate the importance of a single hydrogen bond for strong biotin binding. The new derivatives of avidin should be useful for applications whereby a reversible interaction between the four biotin-binding sites and biotin is desired, thus increasing the versatility of the avidin-biotin system for biotechnological application.
Full Text
The Full Text of this article is available as a PDF (621.3 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bayer E. A., Ben-Hur H., Gitlin G., Wilchek M. An improved method for the single-step purification of streptavidin. J Biochem Biophys Methods. 1986 Sep;13(2):103–112. doi: 10.1016/0165-022x(86)90022-9. [DOI] [PubMed] [Google Scholar]
- Bayer E. A., Kulik T., Adar R., Wilchek M. Close similarity among streptavidin-like, biotin-binding proteins from Streptomyces. Biochim Biophys Acta. 1995 Jul 25;1263(1):60–66. doi: 10.1016/0167-4781(95)00077-t. [DOI] [PubMed] [Google Scholar]
- Bayer E. A., Wilchek M. The use of the avidin-biotin complex as a tool in molecular biology. Methods Biochem Anal. 1980;26:1–45. doi: 10.1002/9780470110461.ch1. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- CHA C. Y., SCHERAGA H. A. THE BURIED TYROSYL RESIDUES OF RIBONUCLEASE. I. DIFFERENTIAL RATES OF IODINATION. J Biol Chem. 1963 Sep;238:2958–2964. [PubMed] [Google Scholar]
- Chilkoti A., Tan P. H., Stayton P. S. Site-directed mutagenesis studies of the high-affinity streptavidin-biotin complex: contributions of tryptophan residues 79, 108, and 120. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1754–1758. doi: 10.1073/pnas.92.5.1754. [DOI] [PMC free article] [PubMed] [Google Scholar]
- GREEN N. M. AVIDIN. 1. THE USE OF (14-C)BIOTIN FOR KINETIC STUDIES AND FOR ASSAY. Biochem J. 1963 Dec;89:585–591. doi: 10.1042/bj0890585. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitlin G., Bayer E. A., Wilchek M. Studies on the biotin-binding sites of avidin and streptavidin. Tyrosine residues are involved in the binding site. Biochem J. 1990 Jul 15;269(2):527–530. doi: 10.1042/bj2690527. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gitlin G., Khait I., Bayer E. A., Wilchek M., Muszkat K. A. Studies on the biotin-binding sites of avidin and streptavidin. A chemically induced dynamic nuclear polarization investigation of the status of tyrosine residues. Biochem J. 1989 Apr 15;259(2):493–498. doi: 10.1042/bj2590493. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green N. M. Avidin and streptavidin. Methods Enzymol. 1990;184:51–67. doi: 10.1016/0076-6879(90)84259-j. [DOI] [PubMed] [Google Scholar]
- Green N. M. Avidin. Adv Protein Chem. 1975;29:85–133. doi: 10.1016/s0065-3233(08)60411-8. [DOI] [PubMed] [Google Scholar]
- Hendrickson W. A., Pähler A., Smith J. L., Satow Y., Merritt E. A., Phizackerley R. P. Crystal structure of core streptavidin determined from multiwavelength anomalous diffraction of synchrotron radiation. Proc Natl Acad Sci U S A. 1989 Apr;86(7):2190–2194. doi: 10.1073/pnas.86.7.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hofmann K., Wood S. W., Brinton C. C., Montibeller J. A., Finn F. M. Iminobiotin affinity columns and their application to retrieval of streptavidin. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4666–4668. doi: 10.1073/pnas.77.8.4666. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Livnah O., Bayer E. A., Wilchek M., Sussman J. L. Three-dimensional structures of avidin and the avidin-biotin complex. Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5076–5080. doi: 10.1073/pnas.90.11.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orr G. A. The use of the 2-iminobiotin-avidin interaction for the selective retrieval of labeled plasma membrane components. J Biol Chem. 1981 Jan 25;256(2):761–766. [PubMed] [Google Scholar]
- Pugliese L., Coda A., Malcovati M., Bolognesi M. Three-dimensional structure of the tetragonal crystal form of egg-white avidin in its functional complex with biotin at 2.7 A resolution. J Mol Biol. 1993 Jun 5;231(3):698–710. doi: 10.1006/jmbi.1993.1321. [DOI] [PubMed] [Google Scholar]
- Sano T., Cantor C. R. Intersubunit contacts made by tryptophan 120 with biotin are essential for both strong biotin binding and biotin-induced tighter subunit association of streptavidin. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3180–3184. doi: 10.1073/pnas.92.8.3180. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tawfik D. S., Chap R., Eshhar Z., Green B. S. pH on-off switching of antibody-hapten binding by site-specific chemical modification of tyrosine. Protein Eng. 1994 Mar;7(3):431–434. doi: 10.1093/protein/7.3.431. [DOI] [PubMed] [Google Scholar]
- Weber P. C., Ohlendorf D. H., Wendoloski J. J., Salemme F. R. Structural origins of high-affinity biotin binding to streptavidin. Science. 1989 Jan 6;243(4887):85–88. doi: 10.1126/science.2911722. [DOI] [PubMed] [Google Scholar]
- Wilchek M., Bayer E. A. The avidin-biotin complex in bioanalytical applications. Anal Biochem. 1988 May 15;171(1):1–32. doi: 10.1016/0003-2697(88)90120-0. [DOI] [PubMed] [Google Scholar]
- Wilchek M., Miron T., Kohn J. Affinity chromatography. Methods Enzymol. 1984;104:3–55. doi: 10.1016/s0076-6879(84)04082-9. [DOI] [PubMed] [Google Scholar]
- Wynne D., Wilchek M., Novogrodsky A. A chemical approach for the localization of membrane sites involved in lymphocyte activation. Biochem Biophys Res Commun. 1976 Feb 9;68(3):730–739. doi: 10.1016/0006-291x(76)91206-7. [DOI] [PubMed] [Google Scholar]