Abstract
Cytokines and bacterial lipopolysaccharides (LPSs) stimulate nitric oxide production in macrophages by inducing transcription of the gene coding for the inducible isoform of nitric oxide synthase (iNOS). We have cloned the mouse iNOS gene promoter and analysed its structural features and its response to interferon-gamma (IFN-gamma) and Escherichia coli LPS in RAW 264.7 mouse macrophage-like cells. Transcription of a recombinant reporter gene including the promoter and 4 kb of its 5'-flanking DNA, linked to the bacterial chloramphenicol acetyltransferase (CAT) reporter gene, is stimulated by IFN-gamma and, more efficiently, by LPS upon transient transfection in RAW 264.7 cells. Two upstream DNA regions are required for maximal promoter activation of LPS: the first maps between positions -1541 and -775 and the other between -420 and -47, with respect to the major transcriptional start site of the iNOS gene. The upstream-most region also mediates promoter trans-activation by IFN-gamma. As reported earlier for transcription of the endogenous iNOS gene, combined stimulation of RAW 264.7 cells with IFN-gamma and LPS results in lower activation of the transfected promoter, when compared with LPS alone. NG-Monomethyl-L-arginine, a competitive inhibitor of nitric oxide synthase activity, enhances iNOS gene mRNA induction and promoter activation by IFN-gamma and LPS, indicating that nitric oxide can influence negatively the reponsiveness of this gene to inducers. These results suggest the possibility of a negative regulatory feedback exerted by iNOS on the transcriptional activation of its own gene.
Full Text
The Full Text of this article is available as a PDF (391.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Akaike T., Yoshida M., Miyamoto Y., Sato K., Kohno M., Sasamoto K., Miyazaki K., Ueda S., Maeda H. Antagonistic action of imidazolineoxyl N-oxides against endothelium-derived relaxing factor/.NO through a radical reaction. Biochemistry. 1993 Jan 26;32(3):827–832. doi: 10.1021/bi00054a013. [DOI] [PubMed] [Google Scholar]
- Ambrosino C., Cicatiello L., Cobellis G., Addeo R., Sica V., Bresciani F., Weisz A. Functional antagonism between the estrogen receptor and Fos in the regulation of c-fos protooncogene transcription. Mol Endocrinol. 1993 Nov;7(11):1472–1483. doi: 10.1210/mend.7.11.8114761. [DOI] [PubMed] [Google Scholar]
- Collart M. A., Baeuerle P., Vassalli P. Regulation of tumor necrosis factor alpha transcription in macrophages: involvement of four kappa B-like motifs and of constitutive and inducible forms of NF-kappa B. Mol Cell Biol. 1990 Apr;10(4):1498–1506. doi: 10.1128/mcb.10.4.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dalton D. K., Pitts-Meek S., Keshav S., Figari I. S., Bradley A., Stewart T. A. Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993 Mar 19;259(5102):1739–1742. doi: 10.1126/science.8456300. [DOI] [PubMed] [Google Scholar]
- Fujisawa H., Ogura T., Hokari A., Weisz A., Yamashita J., Esumi H. Inducible nitric oxide synthase in a human glioblastoma cell line. J Neurochem. 1995 Jan;64(1):85–91. doi: 10.1046/j.1471-4159.1995.64010085.x. [DOI] [PubMed] [Google Scholar]
- Grimm S., Baeuerle P. A. The inducible transcription factor NF-kappa B: structure-function relationship of its protein subunits. Biochem J. 1993 Mar 1;290(Pt 2):297–308. doi: 10.1042/bj2900297. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grossman A. NO news is good news. Endocrinology. 1994 Mar;134(3):1003–1005. doi: 10.1210/endo.134.3.8119135. [DOI] [PubMed] [Google Scholar]
- Harada H., Takahashi E., Itoh S., Harada K., Hori T. A., Taniguchi T. Structure and regulation of the human interferon regulatory factor 1 (IRF-1) and IRF-2 genes: implications for a gene network in the interferon system. Mol Cell Biol. 1994 Feb;14(2):1500–1509. doi: 10.1128/mcb.14.2.1500. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Henry Y., Lepoivre M., Drapier J. C., Ducrocq C., Boucher J. L., Guissani A. EPR characterization of molecular targets for NO in mammalian cells and organelles. FASEB J. 1993 Sep;7(12):1124–1134. doi: 10.1096/fasebj.7.12.8397130. [DOI] [PubMed] [Google Scholar]
- Kamijo R., Harada H., Matsuyama T., Bosland M., Gerecitano J., Shapiro D., Le J., Koh S. I., Kimura T., Green S. J. Requirement for transcription factor IRF-1 in NO synthase induction in macrophages. Science. 1994 Mar 18;263(5153):1612–1615. doi: 10.1126/science.7510419. [DOI] [PubMed] [Google Scholar]
- Lowenstein C. J., Alley E. W., Raval P., Snowman A. M., Snyder S. H., Russell S. W., Murphy W. J. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc Natl Acad Sci U S A. 1993 Oct 15;90(20):9730–9734. doi: 10.1073/pnas.90.20.9730. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lowenstein C. J., Snyder S. H. Nitric oxide, a novel biologic messenger. Cell. 1992 Sep 4;70(5):705–707. doi: 10.1016/0092-8674(92)90301-r. [DOI] [PubMed] [Google Scholar]
- Luss H., DiSilvio M., Litton A. L., Molina y Vedia L., Nussler A. K., Billiar T. R. Inhibition of nitric oxide synthesis enhances the expression of inducible nitric oxide synthase mRNA and protein in a model of chronic liver inflammation. Biochem Biophys Res Commun. 1994 Oct 28;204(2):635–640. doi: 10.1006/bbrc.1994.2506. [DOI] [PubMed] [Google Scholar]
- Lyons C. R., Orloff G. J., Cunningham J. M. Molecular cloning and functional expression of an inducible nitric oxide synthase from a murine macrophage cell line. J Biol Chem. 1992 Mar 25;267(9):6370–6374. [PubMed] [Google Scholar]
- Nathan C., Xie Q. W. Regulation of biosynthesis of nitric oxide. J Biol Chem. 1994 May 13;269(19):13725–13728. [PubMed] [Google Scholar]
- Nunokawa Y., Ishida N., Tanaka S. Promoter analysis of human inducible nitric oxide synthase gene associated with cardiovascular homeostasis. Biochem Biophys Res Commun. 1994 Apr 29;200(2):802–807. doi: 10.1006/bbrc.1994.1522. [DOI] [PubMed] [Google Scholar]
- Oguchi S., Weisz A., Esumi H. Enhancement of inducible-type NO synthase gene transcription by protein synthesis inhibitors. Activation of an intracellular signal transduction pathway by low concentrations of cycloheximide. FEBS Lett. 1994 Feb 7;338(3):326–330. doi: 10.1016/0014-5793(94)80293-9. [DOI] [PubMed] [Google Scholar]
- Pantopoulos K., Hentze M. W. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1267–1271. doi: 10.1073/pnas.92.5.1267. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Park S. K., Lin H. L., Murphy S. Nitric oxide limits transcriptional induction of nitric oxide synthase in CNS glial cells. Biochem Biophys Res Commun. 1994 Jun 15;201(2):762–768. doi: 10.1006/bbrc.1994.1766. [DOI] [PubMed] [Google Scholar]
- Peunova N., Enikolopov G. Amplification of calcium-induced gene transcription by nitric oxide in neuronal cells. Nature. 1993 Jul 29;364(6436):450–453. doi: 10.1038/364450a0. [DOI] [PubMed] [Google Scholar]
- Snyder S. H. Janus faces of nitric oxide. Nature. 1993 Aug 12;364(6438):577–577. doi: 10.1038/364577a0. [DOI] [PubMed] [Google Scholar]
- Stamler J. S. Redox signaling: nitrosylation and related target interactions of nitric oxide. Cell. 1994 Sep 23;78(6):931–936. doi: 10.1016/0092-8674(94)90269-0. [DOI] [PubMed] [Google Scholar]
- Stamler J. S., Singel D. J., Loscalzo J. Biochemistry of nitric oxide and its redox-activated forms. Science. 1992 Dec 18;258(5090):1898–1902. doi: 10.1126/science.1281928. [DOI] [PubMed] [Google Scholar]
- Tanaka T., Akira S., Yoshida K., Umemoto M., Yoneda Y., Shirafuji N., Fujiwara H., Suematsu S., Yoshida N., Kishimoto T. Targeted disruption of the NF-IL6 gene discloses its essential role in bacteria killing and tumor cytotoxicity by macrophages. Cell. 1995 Jan 27;80(2):353–361. doi: 10.1016/0092-8674(95)90418-2. [DOI] [PubMed] [Google Scholar]
- Weisz A., Oguchi S., Cicatiello L., Esumi H. Dual mechanism for the control of inducible-type NO synthase gene expression in macrophages during activation by interferon-gamma and bacterial lipopolysaccharide. Transcriptional and post-transcriptional regulation. J Biol Chem. 1994 Mar 18;269(11):8324–8333. [PubMed] [Google Scholar]
- Xie Q. W., Kashiwabara Y., Nathan C. Role of transcription factor NF-kappa B/Rel in induction of nitric oxide synthase. J Biol Chem. 1994 Feb 18;269(7):4705–4708. [PubMed] [Google Scholar]
- Xie Q. W., Whisnant R., Nathan C. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon gamma and bacterial lipopolysaccharide. J Exp Med. 1993 Jun 1;177(6):1779–1784. doi: 10.1084/jem.177.6.1779. [DOI] [PMC free article] [PubMed] [Google Scholar]