Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 15;316(Pt 1):217–224. doi: 10.1042/bj3160217

Activation of hepatic acetyl-CoA carboxylase by glutamate and Mg2+ is mediated by protein phosphatase-2A.

V Gaussin 1, L Hue 1, W Stalmans 1, M Bollen 1
PMCID: PMC1217325  PMID: 8645208

Abstract

The activation of hepatic acetyl-CoA carboxylase by Na(+)-cotransported amino acids such as glutamine has been attributed mainly to the stimulation of its dephosphorylation by accumulating dicarboxylic acids, e.g. glutamate. We report here on a hepatic species of protein phosphatase-2A that activates acetyl-CoA carboxylase in the presence of physiological concentrations of glutamate or Mg2+ and, under these conditions, accounts for virtually all the hepatic acetyl-CoA carboxylase phosphatase activity. Glutamate also stimulated the dephosphorylation of a synthetic pentadecapeptide encompassing the Ser-79 phosphorylation site of rat acetyl-CoA carboxylase, but did not affect the dephosphorylation of other substrates such as phosphorylase. Conversely, protamine, which stimulated the dephosphorylation of phosphorylase, inhibited the activation of acetyl-CoA carboxylase. A comparison with various species of muscle protein phosphatase-2A showed that the stimulatory effects of glutamate and Mg2+ on the acetyl-CoA carboxylase phosphatase activity are largely mediated by the regulatory A subunit. Glutamate and Mg2+ emerge from our study as novel regulators of protein phosphatase-2A when acting on acetyl-CoA carboxylase.

Full Text

The Full Text of this article is available as a PDF (589.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agostinis P., Goris J., Pinna L. A., Marchiori F., Perich J. W., Meyer H. E., Merlevede W. Synthetic peptides as model substrates for the study of the specificity of the polycation-stimulated protein phosphatases. Eur J Biochem. 1990 Apr 30;189(2):235–241. doi: 10.1111/j.1432-1033.1990.tb15482.x. [DOI] [PubMed] [Google Scholar]
  2. Agostinis P., Goris J., Waelkens E., Pinna L. A., Marchiori F., Merlevede W. Dephosphorylation of phosphoproteins and synthetic phosphopeptides. Study of the specificity of the polycation-stimulated and MgATP-dependent phosphorylase phosphatases. J Biol Chem. 1987 Jan 25;262(3):1060–1064. [PubMed] [Google Scholar]
  3. Baquet A., Gaussin V., Bollen M., Stalmans W., Hue L. Mechanism of activation of liver acetyl-CoA carboxylase by cell swelling. Eur J Biochem. 1993 Nov 1;217(3):1083–1089. doi: 10.1111/j.1432-1033.1993.tb18340.x. [DOI] [PubMed] [Google Scholar]
  4. Baquet A., Lavoinne A., Hue L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem J. 1991 Jan 1;273(Pt 1):57–62. doi: 10.1042/bj2730057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Beaty N. B., Lane M. D. The polymerization of acetyl-CoA carboxylase. J Biol Chem. 1983 Nov 10;258(21):13051–13055. [PubMed] [Google Scholar]
  6. Beullens M., Van Eynde A., Stalmans W., Bollen M. The isolation of novel inhibitory polypeptides of protein phosphatase 1 from bovine thymus nuclei. J Biol Chem. 1992 Aug 15;267(23):16538–16544. [PubMed] [Google Scholar]
  7. Bode B. P., Kilberg M. S. Amino acid-dependent increase in hepatic system N activity is linked to cell swelling. J Biol Chem. 1991 Apr 25;266(12):7376–7381. [PubMed] [Google Scholar]
  8. Bollen M., Stalmans W. The structure, role, and regulation of type 1 protein phosphatases. Crit Rev Biochem Mol Biol. 1992;27(3):227–281. doi: 10.3109/10409239209082564. [DOI] [PubMed] [Google Scholar]
  9. Carling D., Clarke P. R., Zammit V. A., Hardie D. G. Purification and characterization of the AMP-activated protein kinase. Copurification of acetyl-CoA carboxylase kinase and 3-hydroxy-3-methylglutaryl-CoA reductase kinase activities. Eur J Biochem. 1989 Dec 8;186(1-2):129–136. doi: 10.1111/j.1432-1033.1989.tb15186.x. [DOI] [PubMed] [Google Scholar]
  10. Chen J., Martin B. L., Brautigan D. L. Regulation of protein serine-threonine phosphatase type-2A by tyrosine phosphorylation. Science. 1992 Aug 28;257(5074):1261–1264. doi: 10.1126/science.1325671. [DOI] [PubMed] [Google Scholar]
  11. Cohen P. The structure and regulation of protein phosphatases. Annu Rev Biochem. 1989;58:453–508. doi: 10.1146/annurev.bi.58.070189.002321. [DOI] [PubMed] [Google Scholar]
  12. Corkey B. E., Duszynski J., Rich T. L., Matschinsky B., Williamson J. R. Regulation of free and bound magnesium in rat hepatocytes and isolated mitochondria. J Biol Chem. 1986 Feb 25;261(6):2567–2574. [PubMed] [Google Scholar]
  13. Davies S. P., Carling D., Hardie D. G. Tissue distribution of the AMP-activated protein kinase, and lack of activation by cyclic-AMP-dependent protein kinase, studied using a specific and sensitive peptide assay. Eur J Biochem. 1989 Dec 8;186(1-2):123–128. doi: 10.1111/j.1432-1033.1989.tb15185.x. [DOI] [PubMed] [Google Scholar]
  14. Davies S. P., Sim A. T., Hardie D. G. Location and function of three sites phosphorylated on rat acetyl-CoA carboxylase by the AMP-activated protein kinase. Eur J Biochem. 1990 Jan 12;187(1):183–190. doi: 10.1111/j.1432-1033.1990.tb15293.x. [DOI] [PubMed] [Google Scholar]
  15. DeGuzman A., Lee E. Y. Preparation of low-molecular-weight forms of rabbit muscle protein phosphatase. Methods Enzymol. 1988;159:356–368. doi: 10.1016/0076-6879(88)59036-5. [DOI] [PubMed] [Google Scholar]
  16. Depaoli-Roach A. A., Park I. K., Cerovsky V., Csortos C., Durbin S. D., Kuntz M. J., Sitikov A., Tang P. M., Verin A., Zolnierowicz S. Serine/threonine protein phosphatases in the control of cell function. Adv Enzyme Regul. 1994;34:199–224. doi: 10.1016/0065-2571(94)90017-5. [DOI] [PubMed] [Google Scholar]
  17. Dobrowsky R. T., Kamibayashi C., Mumby M. C., Hannun Y. A. Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem. 1993 Jul 25;268(21):15523–15530. [PubMed] [Google Scholar]
  18. FISCHER E. H., KREBS E. G. The isolation and crystallization of rabbit skeletal muscle phosphorylase b. J Biol Chem. 1958 Mar;231(1):65–71. [PubMed] [Google Scholar]
  19. Gasbarrini A., Borle A. B., Farghali H., Francavilla A., Van Thiel D. Fructose protects rat hepatocytes from anoxic injury. Effect on intracellular ATP, Ca2+i, Mg2+i, Na+i, and pHi. J Biol Chem. 1992 Apr 15;267(11):7545–7552. [PubMed] [Google Scholar]
  20. Guo H., Reddy S. A., Damuni Z. Purification and characterization of an autophosphorylation-activated protein serine threonine kinase that phosphorylates and inactivates protein phosphatase 2A. J Biol Chem. 1993 May 25;268(15):11193–11198. [PubMed] [Google Scholar]
  21. Hue L. Control of liver carbohydrate and fatty acid metabolism by cell volume. Biochem Soc Trans. 1994 May;22(2):505–508. doi: 10.1042/bst0220505. [DOI] [PubMed] [Google Scholar]
  22. Ingebritsen T. S., Blair J., Guy P., Witters L., Hardie D. G. The protein phosphatases involved in cellular regulation. 3. Fatty acid synthesis, cholesterol synthesis and glycolysis/gluconeogenesis. Eur J Biochem. 1983 May 2;132(2):275–281. doi: 10.1111/j.1432-1033.1983.tb07359.x. [DOI] [PubMed] [Google Scholar]
  23. Ingebritsen T. S., Foulkes J. G., Cohen P. The protein phosphatases involved in cellular regulation. 2. Glycogen metabolism. Eur J Biochem. 1983 May 2;132(2):263–274. doi: 10.1111/j.1432-1033.1983.tb07358.x. [DOI] [PubMed] [Google Scholar]
  24. Ingebritsen T. S., Stewart A. A., Cohen P. The protein phosphatases involved in cellular regulation. 6. Measurement of type-1 and type-2 protein phosphatases in extracts of mammalian tissues; an assessment of their physiological roles. Eur J Biochem. 1983 May 2;132(2):297–307. doi: 10.1111/j.1432-1033.1983.tb07362.x. [DOI] [PubMed] [Google Scholar]
  25. Jessus C., Goris J., Staquet S., Cayla X., Ozon R., Merlevede W. Identification of the ATP + Mg-dependent and polycation-stimulated protein phosphatases in the germinal vesicle of the Xenopus oocyte. Biochem J. 1989 May 15;260(1):45–51. doi: 10.1042/bj2600045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Kamibayashi C., Estes R., Slaughter C., Mumby M. C. Subunit interactions control protein phosphatase 2A. Effects of limited proteolysis, N-ethylmaleimide, and heparin on the interaction of the B subunit. J Biol Chem. 1991 Jul 15;266(20):13251–13260. [PubMed] [Google Scholar]
  27. Kim K. H., López-Casillas F., Bai D. H., Luo X., Pape M. E. Role of reversible phosphorylation of acetyl-CoA carboxylase in long-chain fatty acid synthesis. FASEB J. 1989 Sep;3(11):2250–2256. doi: 10.1096/fasebj.3.11.2570725. [DOI] [PubMed] [Google Scholar]
  28. King A. J., Andjelkovic N., Hemmings B. A., Akhtar M. The phospho-opsin phosphatase from bovine rod outer segments. An insight into the mechanism of stimulation of type-2A protein phosphatase activity by protamine. Eur J Biochem. 1994 Oct 1;225(1):383–394. doi: 10.1111/j.1432-1033.1994.00383.x. [DOI] [PubMed] [Google Scholar]
  29. Krakower G. R., Kim K. H. Purification and properties of acetyl-CoA carboxylase phosphatase. J Biol Chem. 1981 Mar 10;256(5):2408–2413. [PubMed] [Google Scholar]
  30. Kristensen L. O. Associations between transports of alanine and cations across cell membrane in rat hepatocytes. Am J Physiol. 1986 Nov;251(5 Pt 1):G575–G584. doi: 10.1152/ajpgi.1986.251.5.G575. [DOI] [PubMed] [Google Scholar]
  31. Lavoinne A., Baquet A., Hue L. Stimulation of glycogen synthesis and lipogenesis by glutamine in isolated rat hepatocytes. Biochem J. 1987 Dec 1;248(2):429–437. doi: 10.1042/bj2480429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Li Y. M., Casida J. E. Cantharidin-binding protein: identification as protein phosphatase 2A. Proc Natl Acad Sci U S A. 1992 Dec 15;89(24):11867–11870. doi: 10.1073/pnas.89.24.11867. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Meijer A. J., Baquet A., Gustafson L., van Woerkom G. M., Hue L. Mechanism of activation of liver glycogen synthase by swelling. J Biol Chem. 1992 Mar 25;267(9):5823–5828. [PubMed] [Google Scholar]
  34. Mumby M. C., Walter G. Protein serine/threonine phosphatases: structure, regulation, and functions in cell growth. Physiol Rev. 1993 Oct;73(4):673–699. doi: 10.1152/physrev.1993.73.4.673. [DOI] [PubMed] [Google Scholar]
  35. Pelech S., Cohen P. The protein phosphatases involved in cellular regulation. 1. Modulation of protein phosphatases-1 and 2A by histone H1, protamine, polylysine and heparin. Eur J Biochem. 1985 Apr 15;148(2):245–251. doi: 10.1111/j.1432-1033.1985.tb08832.x. [DOI] [PubMed] [Google Scholar]
  36. Raju B., Murphy E., Levy L. A., Hall R. D., London R. E. A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol. 1989 Mar;256(3 Pt 1):C540–C548. doi: 10.1152/ajpcell.1989.256.3.C540. [DOI] [PubMed] [Google Scholar]
  37. Ramachandran C., Goris J., Waelkens E., Merlevede W., Walsh D. A. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases. J Biol Chem. 1987 Mar 5;262(7):3210–3218. [PubMed] [Google Scholar]
  38. Tamura S., Kikuchi H., Kikuchi K., Hiraga A., Tsuiki S. Purification and subunit structure of a high-molecular-weight phosphoprotein phosphatase (phosphatase II) from rat liver. Eur J Biochem. 1980 Mar;104(2):347–355. doi: 10.1111/j.1432-1033.1980.tb04435.x. [DOI] [PubMed] [Google Scholar]
  39. Tamura S., Tsuiki S. Purification and subunit structure of rat-liver phosphoprotein phosphatase, whose molecular weight is 260000 by gel filtration (phosphatase IB). Eur J Biochem. 1980 Oct;111(1):217–224. doi: 10.1111/j.1432-1033.1980.tb06096.x. [DOI] [PubMed] [Google Scholar]
  40. Thampy K. G., Wakil S. J. Activation of acetyl-CoA carboxylase. Purification and properties of a Mn2+-dependent phosphatase. J Biol Chem. 1985 May 25;260(10):6318–6323. [PubMed] [Google Scholar]
  41. Waelkens E., Goris J., Merlevede W. Purification and properties of polycation-stimulated phosphorylase phosphatases from rabbit skeletal muscle. J Biol Chem. 1987 Jan 25;262(3):1049–1059. [PubMed] [Google Scholar]
  42. Witters L. A., Bacon G. W. Protein phosphatases active on acetyl-CoA carboxylase phosphorylated by casein kinase I, casein kinase II and the cAMP-dependent protein kinase. Biochem Biophys Res Commun. 1985 Aug 15;130(3):1132–1138. doi: 10.1016/0006-291x(85)91733-4. [DOI] [PubMed] [Google Scholar]
  43. Wolff R. A., Dobrowsky R. T., Bielawska A., Obeid L. M., Hannun Y. A. Role of ceramide-activated protein phosphatase in ceramide-mediated signal transduction. J Biol Chem. 1994 Jul 29;269(30):19605–19609. [PubMed] [Google Scholar]
  44. Xie H., Clarke S. Protein phosphatase 2A is reversibly modified by methyl esterification at its C-terminal leucine residue in bovine brain. J Biol Chem. 1994 Jan 21;269(3):1981–1984. [PubMed] [Google Scholar]
  45. Yang S. D., Vandenheede J. R., Merlevede W. A simplified procedure for the purification of the protein phosphatase modulator (inhibitor-2) from rabbit skeletal muscle. FEBS Lett. 1981 Sep 28;132(2):293–295. doi: 10.1016/0014-5793(81)81182-9. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES