Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 15;316(Pt 1):239–245. doi: 10.1042/bj3160239

Leukotriene D4-induced mobilization of intracellular Ca2+ in epithelial cells is critically dependent on activation of the small GTP-binding protein Rho.

E Grönroos 1, T Andersson 1, A Schippert 1, L Zheng 1, A Sjölander 1
PMCID: PMC1217328  PMID: 8645211

Abstract

We have previously shown that the leukotriene D4 (LTD4)-induced mobilization of intracellular Ca2+ in epithelial cells is mediated by a G-protein that is distinctly different from the pertussis toxin-sensitive G-protein that regulates the subsequent influx of Ca2+. In the present study, we attempted to gain further knowledge about the mechanisms involved in the LTD4-induced mobilization of intracellular Ca2+ in epithelial cells by investigating the effects of compactin, an inhibitor of the isoprenylation pathway, on this signalling event. In cells preincubated with 10 microM compactin for 48 h, the LTD4-induced mobilization of intracellular Ca2+ was reduced by 75% in comparison with control cells. This reduction was reversed by co-administration of mevalonate (1 mM). The effect of compactin occurred regardless of whether or not Ca2+ was present in the extracellular medium, suggesting that isoprenylation must occur before Ca2+ is released from intracellular stores. In accordance with this, we also found that both the LTD4-induced formation of inositol 1,4,5-trisphosphate and the LTD4-induced phosphorylation of phospholipase C gamma 1 (PLC gamma 1) on tyrosine residues were significantly reduced in compactin-pretreated cells. These results open up the possibility that the activation of PLC gamma 1 is related to a molecule that is sensitive to impaired activity of the isoprenylation pathway, such as a small monomeric G-protein. This idea was supported by the observation that Clostridium botulinum C3 exoenzyme-induced inhibition of Rho proteins abolished the LTD4-induced intracellular mobilization of Ca2+. A regulatory role of Rho proteins in the LTD4-induced activation of PLC gamma 1 is unlikely to be indirectly mediated via an effect on the cytoskeleton, since cytochalasin D had no major effect on the LTD4-induced mobilization of Ca2+. Although the mechanism of interaction remains to be elucidated, the present findings indicate an important role of an isoprenylated protein such as Rho in the LTD4-induced Ca2+ signal.

Full Text

The Full Text of this article is available as a PDF (412.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aktories K., Hall A. Botulinum ADP-ribosyltransferase C3: a new tool to study low molecular weight GTP-binding proteins. Trends Pharmacol Sci. 1989 Oct;10(10):415–418. doi: 10.1016/0165-6147(89)90191-0. [DOI] [PubMed] [Google Scholar]
  2. Alberts A. W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E. Mevinolin: a highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3957–3961. doi: 10.1073/pnas.77.7.3957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Badr K. F., Mong S., Hoover R. L., Schwartzberg M., Ebert J., Jacobson H. R., Harris R. C. Leukotriene D4 binding and signal transduction in rat glomerular mesangial cells. Am J Physiol. 1989 Aug;257(2 Pt 2):F280–F287. doi: 10.1152/ajprenal.1989.257.2.F280. [DOI] [PubMed] [Google Scholar]
  4. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  5. Blank J. L., Brattain K. A., Exton J. H. Activation of cytosolic phosphoinositide phospholipase C by G-protein beta gamma subunits. J Biol Chem. 1992 Nov 15;267(32):23069–23075. [PubMed] [Google Scholar]
  6. Chen X. S., Sheller J. R., Johnson E. N., Funk C. D. Role of leukotrienes revealed by targeted disruption of the 5-lipoxygenase gene. Nature. 1994 Nov 10;372(6502):179–182. doi: 10.1038/372179a0. [DOI] [PubMed] [Google Scholar]
  7. Chong L. D., Traynor-Kaplan A., Bokoch G. M., Schwartz M. A. The small GTP-binding protein Rho regulates a phosphatidylinositol 4-phosphate 5-kinase in mammalian cells. Cell. 1994 Nov 4;79(3):507–513. doi: 10.1016/0092-8674(94)90259-3. [DOI] [PubMed] [Google Scholar]
  8. Cox A. D., Der C. J. Protein prenylation: more than just glue? Curr Opin Cell Biol. 1992 Dec;4(6):1008–1016. doi: 10.1016/0955-0674(92)90133-w. [DOI] [PubMed] [Google Scholar]
  9. Crooke S. T., Mattern M., Sarau H. M., Winkler J. D., Balcarek J., Wong A., Bennett C. F. The signal transduction system of the leukotriene D4 receptor. Trends Pharmacol Sci. 1989 Mar;10(3):103–107. doi: 10.1016/0165-6147(89)90206-x. [DOI] [PubMed] [Google Scholar]
  10. Deanin G. G., Cutts J. L., Pfeiffer J. R., Oliver J. M. Role of isoprenoid metabolism in IgE receptor-mediated signal transduction. J Immunol. 1991 May 15;146(10):3528–3535. [PubMed] [Google Scholar]
  11. Ford-Hutchinson A. W. Leukotrienes: their formation and role as inflammatory mediators. Fed Proc. 1985 Jan;44(1 Pt 1):25–29. [PubMed] [Google Scholar]
  12. Gibbs J. B. Ras C-terminal processing enzymes--new drug targets? Cell. 1991 Apr 5;65(1):1–4. doi: 10.1016/0092-8674(91)90352-y. [DOI] [PubMed] [Google Scholar]
  13. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  14. Grönroos E., Schippert A., Engström M., Sjölander A. The regulation of leukotriene D4-induced calcium influx in human epithelial cells involves protein tyrosine phosphorylation. Cell Calcium. 1995 Mar;17(3):177–186. doi: 10.1016/0143-4160(95)90032-2. [DOI] [PubMed] [Google Scholar]
  15. HENLE G., DEINHARDT F. The establishment of strains of human cells in tissue culture. J Immunol. 1957 Jul;79(1):54–59. [PubMed] [Google Scholar]
  16. Haag H., Grünberg B., Weber C., Vauti F., Aepfelbacher M., Siess W. Lovastatin inhibits receptor-stimulated Ca(2+)-influx in retinoic acid differentiated U937 and HL-60 cells. Cell Signal. 1994 Sep;6(7):735–742. doi: 10.1016/0898-6568(94)00041-7. [DOI] [PubMed] [Google Scholar]
  17. Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol. 1994;10:31–54. doi: 10.1146/annurev.cb.10.110194.000335. [DOI] [PubMed] [Google Scholar]
  18. Hirasawa N., Hoshi T., Kudoh M., Mue S., Tsurufuji S., Watanabe M., Ohuchi K. Analysis of the leukotriene D4 receptor in the granulation tissue of allergic inflammation in rats. Int Arch Allergy Immunol. 1992;99(1):107–111. doi: 10.1159/000236342. [DOI] [PubMed] [Google Scholar]
  19. Homma Y., Emori Y. A dual functional signal mediator showing RhoGAP and phospholipase C-delta stimulating activities. EMBO J. 1995 Jan 16;14(2):286–291. doi: 10.1002/j.1460-2075.1995.tb07002.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jalink K., van Corven E. J., Hengeveld T., Morii N., Narumiya S., Moolenaar W. H. Inhibition of lysophosphatidate- and thrombin-induced neurite retraction and neuronal cell rounding by ADP ribosylation of the small GTP-binding protein Rho. J Cell Biol. 1994 Aug;126(3):801–810. doi: 10.1083/jcb.126.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Jones T. L., Simonds W. F., Merendino J. J., Jr, Brann M. R., Spiegel A. M. Myristoylation of an inhibitory GTP-binding protein alpha subunit is essential for its membrane attachment. Proc Natl Acad Sci U S A. 1990 Jan;87(2):568–572. doi: 10.1073/pnas.87.2.568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Li G., Regazzi R., Roche E., Wollheim C. B. Blockade of mevalonate production by lovastatin attenuates bombesin and vasopressin potentiation of nutrient-induced insulin secretion in HIT-T15 cells. Probable involvement of small GTP-binding proteins. Biochem J. 1993 Jan 15;289(Pt 2):379–385. doi: 10.1042/bj2890379. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Malcolm K. C., Ross A. H., Qiu R. G., Symons M., Exton J. H. Activation of rat liver phospholipase D by the small GTP-binding protein RhoA. J Biol Chem. 1994 Oct 21;269(42):25951–25954. [PubMed] [Google Scholar]
  25. Maltese W. A. Posttranslational modification of proteins by isoprenoids in mammalian cells. FASEB J. 1990 Dec;4(15):3319–3328. doi: 10.1096/fasebj.4.15.2123808. [DOI] [PubMed] [Google Scholar]
  26. Marrero M. B., Paxton W. G., Duff J. L., Berk B. C., Bernstein K. E. Angiotensin II stimulates tyrosine phosphorylation of phospholipase C-gamma 1 in vascular smooth muscle cells. J Biol Chem. 1994 Apr 8;269(14):10935–10939. [PubMed] [Google Scholar]
  27. Metters K. M., Frey E. A., Ford-Hutchinson A. W. Characterization of the leukotriene D4 receptor in hyperreactive rat lung. Eur J Pharmacol. 1991 Feb 26;194(1):51–61. doi: 10.1016/0014-2999(91)90123-8. [DOI] [PubMed] [Google Scholar]
  28. Mong S., Wu H. L., Hogaboom G. K., Clark M. A., Stadel J. M., Crooke S. T. Regulation of ligand binding to leukotriene D4 receptors: effects of cations and guanine nucleotides. Eur J Pharmacol. 1984 Nov 13;106(2):241–253. doi: 10.1016/0014-2999(84)90711-8. [DOI] [PubMed] [Google Scholar]
  29. Mumby S. M., Casey P. J., Gilman A. G., Gutowski S., Sternweis P. C. G protein gamma subunits contain a 20-carbon isoprenoid. Proc Natl Acad Sci U S A. 1990 Aug;87(15):5873–5877. doi: 10.1073/pnas.87.15.5873. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Mumby S. M., Heukeroth R. O., Gordon J. I., Gilman A. G. G-protein alpha-subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci U S A. 1990 Jan;87(2):728–732. doi: 10.1073/pnas.87.2.728. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  32. Rankin S., Morii N., Narumiya S., Rozengurt E. Botulinum C3 exoenzyme blocks the tyrosine phosphorylation of p125FAK and paxillin induced by bombesin and endothelin. FEBS Lett. 1994 Nov 14;354(3):315–319. doi: 10.1016/0014-5793(94)01148-6. [DOI] [PubMed] [Google Scholar]
  33. Ridley A. J., Hall A. Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J. 1994 Jun 1;13(11):2600–2610. doi: 10.1002/j.1460-2075.1994.tb06550.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Samuelsson B., Dahlén S. E., Lindgren J. A., Rouzer C. A., Serhan C. N. Leukotrienes and lipoxins: structures, biosynthesis, and biological effects. Science. 1987 Sep 4;237(4819):1171–1176. doi: 10.1126/science.2820055. [DOI] [PubMed] [Google Scholar]
  35. Siddiqi A. R., Smith J. L., Ross A. H., Qiu R. G., Symons M., Exton J. H. Regulation of phospholipase D in HL60 cells. Evidence for a cytosolic phospholipase D. J Biol Chem. 1995 Apr 14;270(15):8466–8473. doi: 10.1074/jbc.270.15.8466. [DOI] [PubMed] [Google Scholar]
  36. Simonds W. F., Butrynski J. E., Gautam N., Unson C. G., Spiegel A. M. G-protein beta gamma dimers. Membrane targeting requires subunit coexpression and intact gamma C-A-A-X domain. J Biol Chem. 1991 Mar 25;266(9):5363–5366. [PubMed] [Google Scholar]
  37. Sjölander A., Grönroos E., Hammarström S., Andersson T. Leukotriene D4 and E4 induce transmembrane signaling in human epithelial cells. Single cell analysis reveals diverse pathways at the G-protein level for the influx and the intracellular mobilization of Ca2+. J Biol Chem. 1990 Dec 5;265(34):20976–20981. [PubMed] [Google Scholar]
  38. Särndahl E., Lindroth M., Bengtsson T., Fällman M., Gustavsson J., Stendahl O., Andersson T. Association of ligand-receptor complexes with actin filaments in human neutrophils: a possible regulatory role for a G-protein. J Cell Biol. 1989 Dec;109(6 Pt 1):2791–2799. doi: 10.1083/jcb.109.6.2791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Torti M., Lapetina E. G. Role of rap1B and p21ras GTPase-activating protein in the regulation of phospholipase C-gamma 1 in human platelets. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7796–7800. doi: 10.1073/pnas.89.16.7796. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Watanabe T., Shimizu T., Miki I., Sakanaka C., Honda Z., Seyama Y., Teramoto T., Matsushima T., Ui M., Kurokawa K. Characterization of the guinea pig lung membrane leukotriene D4 receptor solubilized in an active form. Association and dissociation with an islet-activating protein-sensitive guanine nucleotide-binding protein. J Biol Chem. 1990 Dec 5;265(34):21237–21241. [PubMed] [Google Scholar]
  41. Zhang J., King W. G., Dillon S., Hall A., Feig L., Rittenhouse S. E. Activation of platelet phosphatidylinositide 3-kinase requires the small GTP-binding protein Rho. J Biol Chem. 1993 Oct 25;268(30):22251–22254. [PubMed] [Google Scholar]
  42. Zhang J., Zhang J., Benovic J. L., Sugai M., Wetzker R., Gout I., Rittenhouse S. E. Sequestration of a G-protein beta gamma subunit or ADP-ribosylation of Rho can inhibit thrombin-induced activation of platelet phosphoinositide 3-kinases. J Biol Chem. 1995 Mar 24;270(12):6589–6594. doi: 10.1074/jbc.270.12.6589. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES