Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 15;316(Pt 1):317–324. doi: 10.1042/bj3160317

Aldehyde dehydrogenase from adult human brain that dehydrogenates gamma-aminobutyraldehyde: purification, characterization, cloning and distribution.

A Kikonyogo 1, R Pietruszko 1
PMCID: PMC1217341  PMID: 8645224

Abstract

Enzyme purification and characterization, cDNA cloning and Northern blot analysis were the techniques utilized during this investigation to determine the identity and occurrence of the aldehyde dehydrogenase that metabolizes gamma-aminobutyraldehyde in adult human brain. The purification yielded one major protein which was active with gamma-aminobutyraldehyde. It had the physico-chemical and kinetic properties of the human liver E3 isoenzyme of aldehyde dehydrogenase (EC 1.2.1.3), and also interacted with an anti-(liver E3 isoenzyme) antibody. Tryptic peptides derived from the purified brain protein matched the amino acid sequence of the liver E3 isoenzyme. Employing liver E3 cDNA, a human cerebellar cDNA library was screened and a 2.0 kb cDNA fragment was isolated. The cerebellar cDNA yielded a derived primary structure which differed from the liver E3 amino acid sequence by a single serine-to-cysteine substitution at position 88 (position 84 in the liver sequence). Thus the gamma-amino-butyraldehyde-metabolizing enzyme from human brain can be identified as E3', a variant of the E3 isoenzyme. The catalytic properties of the brain variant were indistinguishable from those of E3, and so the functional importance of this variant is at present unknown. The distribution of this enzyme in brain was investigated by Northern blot analysis, which demonstrated the presence of E3' mRNA in all regions of the human brain. mRNA levels were variable in the different brain areas, with the highest levels in the spinal cord and the lowest in the occipital pole.

Full Text

The Full Text of this article is available as a PDF (535.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Takada K., Ohkawa K., Matsuda M. Purification and characterization of a rat brain aldehyde dehydrogenase able to metabolize gamma-aminobutyraldehyde to gamma-aminobutyric acid. Biochem J. 1990 Jul 1;269(1):25–29. doi: 10.1042/bj2690025. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambroziak W., Pietruszko R. Human aldehyde dehydrogenase. Activity with aldehyde metabolites of monoamines, diamines, and polyamines. J Biol Chem. 1991 Jul 15;266(20):13011–13018. [PubMed] [Google Scholar]
  3. Ambroziak W., Pietruszko R. Metabolic role of aldehyde dehydrogenase. Adv Exp Med Biol. 1993;328:5–15. doi: 10.1007/978-1-4615-2904-0_2. [DOI] [PubMed] [Google Scholar]
  4. BURKARD W. P., GEY K. F., PLETSCHER A. Diamine oxidase in the brain of vertebrates. J Neurochem. 1963 Mar;10:183–186. doi: 10.1111/j.1471-4159.1963.tb09481.x. [DOI] [PubMed] [Google Scholar]
  5. Best C. H., Ridout J. H., Lucas C. C. Alleviatiin of dietary cirrhosis with betaine and other lipotropic agents. Can J Physiol Pharmacol. 1969 Jan;47(1):73–79. doi: 10.1139/y69-012. [DOI] [PubMed] [Google Scholar]
  6. Chern M. K., Pietruszko R. Human aldehyde dehydrogenase E3 isozyme is a betaine aldehyde dehydrogenase. Biochem Biophys Res Commun. 1995 Aug 15;213(2):561–568. doi: 10.1006/bbrc.1995.2168. [DOI] [PubMed] [Google Scholar]
  7. Erdjument-Bromage H., Lui M., Sabatini D. M., Snyder S. H., Tempst P. High-sensitivity sequencing of large proteins: partial structure of the rapamycin-FKBP12 target. Protein Sci. 1994 Dec;3(12):2435–2446. doi: 10.1002/pro.5560031227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Everse J., Kaplan N. O. Lactate dehydrogenases: structure and function. Adv Enzymol Relat Areas Mol Biol. 1973;37:61–133. doi: 10.1002/9780470122822.ch2. [DOI] [PubMed] [Google Scholar]
  9. Freed W. J., Gillin J. C., Wyatt R. J. Anticonvulsant properties of betaine. Epilepsia. 1979 Jun;20(3):209–213. doi: 10.1111/j.1528-1157.1979.tb04797.x. [DOI] [PubMed] [Google Scholar]
  10. GOA J. A micro biuret method for protein determination; determination of total protein in cerebrospinal fluid. Scand J Clin Lab Invest. 1953;5(3):218–222. doi: 10.3109/00365515309094189. [DOI] [PubMed] [Google Scholar]
  11. Greenfield N. J., Pietruszko R. Two aldehyde dehydrogenases from human liver. Isolation via affinity chromatography and characterization of the isozymes. Biochim Biophys Acta. 1977 Jul 8;483(1):35–45. doi: 10.1016/0005-2744(77)90005-5. [DOI] [PubMed] [Google Scholar]
  12. Kurys G., Ambroziak W., Pietruszko R. Human aldehyde dehydrogenase. Purification and characterization of a third isozyme with low Km for gamma-aminobutyraldehyde. J Biol Chem. 1989 Mar 15;264(8):4715–4721. [PubMed] [Google Scholar]
  13. Kurys G., Shah P. C., Kikonygo A., Reed D., Ambroziak W., Pietruszko R. Human aldehyde dehydrogenase. cDNA cloning and primary structure of the enzyme that catalyzes dehydrogenation of 4-aminobutyraldehyde. Eur J Biochem. 1993 Dec 1;218(2):311–320. doi: 10.1111/j.1432-1033.1993.tb18379.x. [DOI] [PubMed] [Google Scholar]
  14. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  15. Lee J. E., Cho Y. D. Purification and characterization of bovine brain gamma-aminobutyraldehyde dehydrogenase. Biochem Biophys Res Commun. 1992 Nov 30;189(1):450–454. [PubMed] [Google Scholar]
  16. Petronini P. G., De Angelis E. M., Borghetti P., Borghetti A. F., Wheeler K. P. Modulation by betaine of cellular responses to osmotic stress. Biochem J. 1992 Feb 15;282(Pt 1):69–73. doi: 10.1042/bj2820069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Preece N. E., Baker D., Butter C., Gadian D. G., Urenjak J. Experimental allergic encephalomyelitis raises betaine levels in the spinal cord of strain 13 guinea-pigs. NMR Biomed. 1993 May-Jun;6(3):194–200. doi: 10.1002/nbm.1940060305. [DOI] [PubMed] [Google Scholar]
  18. ROBERTS E., FRANKEL S. gamma-Aminobutyric acid in brain: its formation from glutamic acid. J Biol Chem. 1950 Nov;187(1):55–63. [PubMed] [Google Scholar]
  19. Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Seiler N., Al-Therib M. J. Putrescine catabolism in mammalian brain. Biochem J. 1974 Oct;144(1):29–35. doi: 10.1042/bj1440029. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Seiler N., Eichentopf B. 4-aminobutyrate in mammalian putrescine catabolism. Biochem J. 1975 Nov;152(2):201–210. doi: 10.1042/bj1520201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Yancey P. H., Clark M. E., Hand S. C., Bowlus R. D., Somero G. N. Living with water stress: evolution of osmolyte systems. Science. 1982 Sep 24;217(4566):1214–1222. doi: 10.1126/science.7112124. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES