Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 May 15;316(Pt 1):35–42. doi: 10.1042/bj3160035

Translocation of annexin I to plasma membranes and phagosomes in human neutrophils upon stimulation with opsonized zymosan: possible role in phagosome function.

M Kaufman 1, T Leto 1, R Levy 1
PMCID: PMC1217346  PMID: 8645229

Abstract

Annexin I in the cytosol of resting neutrophils was translocated to the plasma membranes upon addition of opsonized zymosan (OZ). Maximum translocation could be detected 1 min after stimulation with OZ, and decreased thereafter. Subcellular fractionation studies demonstrated that annexin I could not be detected in the granule fractions in either resting or activated cells, but was found in association with the phagosome fraction. The marked translocation of annexin I was unique to OZ, since formyl-Met-Leu-Phe induced only slight translocation of annexin I to the plasma membranes, and phorbol 12-myristate 13-acetate had no effect at all. The mechanism regulating the translocation of annexin I is not clear. Annexin I is not phosphorylated in resting or stimulated cells. The correlation between the elevation in the intracellular calcium ion concentration ([Ca2+]i) and the degree of translocation of annexin I to the plasma membranes induced by the different stimuli, together with the inhibition of these processes by the addition of EGTA, indicate that the translocation of annexin I can probably be attributed to the rise in [Ca2+]i. However, this cannot be the sole mechanism since ionomycin, which caused an increase in [CA2+]i similar to that induced by OZ, was less efficient than OZ in inducing translocation of annexin I. The induction of annexin I translocation to the plasma membrane by OZ, which was the only agent that induced phagosome formation, and the detection of annexin I in the phagosome fraction, suggest that annexin I participates in phagosome function.

Full Text

The Full Text of this article is available as a PDF (403.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bauldry S. A., Wykle R. L., Bass D. A. Phospholipase A2 activation in human neutrophils. Differential actions of diacylglycerols and alkylacylglycerols in priming cells for stimulation by N-formyl-Met-Leu-Phe. J Biol Chem. 1988 Nov 15;263(32):16787–16795. [PubMed] [Google Scholar]
  2. Blackwood R. A., Ernst J. D. Characterization of Ca2(+)-dependent phospholipid binding, vesicle aggregation and membrane fusion by annexins. Biochem J. 1990 Feb 15;266(1):195–200. doi: 10.1042/bj2660195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borregaard N., Heiple J. M., Simons E. R., Clark R. A. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol. 1983 Jul;97(1):52–61. doi: 10.1083/jcb.97.1.52. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Borregaard N., Kjeldsen L., Lollike K., Sengeløv H. Ca(2+)-dependent translocation of cytosolic proteins to isolated granule subpopulations and plasma membrane from human neutrophils. FEBS Lett. 1992 Jun 15;304(2-3):195–197. doi: 10.1016/0014-5793(92)80617-p. [DOI] [PubMed] [Google Scholar]
  5. Burgoyne R. D., Geisow M. J. The annexin family of calcium-binding proteins. Review article. Cell Calcium. 1989 Jan;10(1):1–10. doi: 10.1016/0143-4160(89)90038-9. [DOI] [PubMed] [Google Scholar]
  6. Creutz C. E. The annexins and exocytosis. Science. 1992 Nov 6;258(5084):924–931. doi: 10.1126/science.1439804. [DOI] [PubMed] [Google Scholar]
  7. Dana R., Malech H. L., Levy R. The requirement for phospholipase A2 for activation of the assembled NADPH oxidase in human neutrophils. Biochem J. 1994 Jan 1;297(Pt 1):217–223. doi: 10.1042/bj2970217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Davidson F. F., Dennis E. A., Powell M., Glenney J. R., Jr Inhibition of phospholipase A2 by "lipocortins" and calpactins. An effect of binding to substrate phospholipids. J Biol Chem. 1987 Feb 5;262(4):1698–1705. [PubMed] [Google Scholar]
  9. Drust D. S., Creutz C. E. Differential subcellular distribution of p36 (the heavy chain of calpactin I) and other annexins in the adrenal medulla. J Neurochem. 1991 Feb;56(2):469–478. doi: 10.1111/j.1471-4159.1991.tb08174.x. [DOI] [PubMed] [Google Scholar]
  10. Ernst J. D. Annexin III translocates to the periphagosomal region when neutrophils ingest opsonized yeast. J Immunol. 1991 May 1;146(9):3110–3114. [PubMed] [Google Scholar]
  11. Fava R. A., Cohen S. Isolation of a calcium-dependent 35-kilodalton substrate for the epidermal growth factor receptor/kinase from A-431 cells. J Biol Chem. 1984 Feb 25;259(4):2636–2645. [PubMed] [Google Scholar]
  12. Francis J. W., Balazovich K. J., Smolen J. E., Margolis D. I., Boxer L. A. Human neutrophil annexin I promotes granule aggregation and modulates Ca(2+)-dependent membrane fusion. J Clin Invest. 1992 Aug;90(2):537–544. doi: 10.1172/JCI115892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Haigler H. T., Schlaepfer D. D., Burgess W. H. Characterization of lipocortin I and an immunologically unrelated 33-kDa protein as epidermal growth factor receptor/kinase substrates and phospholipase A2 inhibitors. J Biol Chem. 1987 May 15;262(14):6921–6930. [PubMed] [Google Scholar]
  14. Henderson L. M., Chappell J. B., Jones O. T. Superoxide generation is inhibited by phospholipase A2 inhibitors. Role for phospholipase A2 in the activation of the NADPH oxidase. Biochem J. 1989 Nov 15;264(1):249–255. doi: 10.1042/bj2640249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Henson P. M., Zanolari B., Schwartzman N. A., Hong S. R. Intracellular control of human neutrophil secretion. I. C5a-induced stimulus-specific desensitization and the effects of cytochalasin B. J Immunol. 1978 Sep;121(3):851–855. [PubMed] [Google Scholar]
  16. Huang K. S., Wallner B. P., Mattaliano R. J., Tizard R., Burne C., Frey A., Hession C., McGray P., Sinclair L. K., Chow E. P. Two human 35 kd inhibitors of phospholipase A2 are related to substrates of pp60v-src and of the epidermal growth factor receptor/kinase. Cell. 1986 Jul 18;46(2):191–199. doi: 10.1016/0092-8674(86)90736-1. [DOI] [PubMed] [Google Scholar]
  17. Johnstone S. A., Hubaishy I., Waisman D. M. Regulation of annexin I-dependent aggregation of phospholipid vesicles by protein kinase C. Biochem J. 1993 Sep 15;294(Pt 3):801–807. doi: 10.1042/bj2940801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Klee C. B. Ca2+-dependent phospholipid- (and membrane-) binding proteins. Biochemistry. 1988 Sep 6;27(18):6645–6653. doi: 10.1021/bi00418a001. [DOI] [PubMed] [Google Scholar]
  19. Le Cabec V., Maridonneau-Parini I. Annexin 3 is associated with cytoplasmic granules in neutrophils and monocytes and translocates to the plasma membrane in activated cells. Biochem J. 1994 Oct 15;303(Pt 2):481–487. doi: 10.1042/bj3030481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Leto T. L., Lomax K. J., Volpp B. D., Nunoi H., Sechler J. M., Nauseef W. M., Clark R. A., Gallin J. I., Malech H. L. Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science. 1990 May 11;248(4956):727–730. doi: 10.1126/science.1692159. [DOI] [PubMed] [Google Scholar]
  21. Levy R., Dana R., Leto T. L., Malech H. L. The requirement of p47 phosphorylation for activation of NADPH oxidase by opsonized zymosan in human neutrophils. Biochim Biophys Acta. 1994 Feb 17;1220(3):253–260. doi: 10.1016/0167-4889(94)90146-5. [DOI] [PubMed] [Google Scholar]
  22. Levy R., Malech H. L., Rotrosen D. Production of myeloid cell cytosols functionally and immunochemically deficient in the 47 kDa or 67 kDa NADPH oxidase cytosolic factors. Biochem Biophys Res Commun. 1990 Aug 16;170(3):1114–1120. doi: 10.1016/0006-291x(90)90508-k. [DOI] [PubMed] [Google Scholar]
  23. Levy R., Rotrosen D., Nagauker O., Leto T. L., Malech H. L. Induction of the respiratory burst in HL-60 cells. Correlation of function and protein expression. J Immunol. 1990 Oct 15;145(8):2595–2601. [PubMed] [Google Scholar]
  24. Maridonneau-Parini I., Errasfa M., Russo-Marie F. Inhibition of O2- generation by dexamethasone is mimicked by lipocortin I in alveolar macrophages. J Clin Invest. 1989 Jun;83(6):1936–1940. doi: 10.1172/JCI114101. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Mayer R. J., Marshall L. A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993 Feb 1;7(2):339–348. doi: 10.1096/fasebj.7.2.8440410. [DOI] [PubMed] [Google Scholar]
  26. Meers P., Ernst J. D., Düzgünes N., Hong K. L., Fedor J., Goldstein I. M., Papahadjopoulos D. Synexin-like proteins from human polymorphonuclear leukocytes. Identification and characterization of granule-aggregating and membrane-fusing activities. J Biol Chem. 1987 Jun 5;262(16):7850–7858. [PubMed] [Google Scholar]
  27. Meers P., Mealy T., Pavlotsky N., Tauber A. I. Annexin I-mediated vesicular aggregation: mechanism and role in human neutrophils. Biochemistry. 1992 Jul 21;31(28):6372–6382. doi: 10.1021/bi00143a003. [DOI] [PubMed] [Google Scholar]
  28. Meers P., Mealy T., Tauber A. I. Annexin I interactions with human neutrophil specific granules: fusogenicity and coaggregation with plasma membrane vesicles. Biochim Biophys Acta. 1993 Apr 22;1147(2):177–184. doi: 10.1016/0005-2736(93)90002-h. [DOI] [PubMed] [Google Scholar]
  29. Muid R. E., Twomey B., Dale M. M. The effect of inhibition of both diacylglycerol metabolism and phospholipase A2 activity on superoxide generation by human neutrophils. FEBS Lett. 1988 Jul 4;234(1):235–240. doi: 10.1016/0014-5793(88)81342-5. [DOI] [PubMed] [Google Scholar]
  30. Perretti M., Flower R. J. Modulation of IL-1-induced neutrophil migration by dexamethasone and lipocortin 1. J Immunol. 1993 Feb 1;150(3):992–999. [PubMed] [Google Scholar]
  31. Pick E., Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211–226. doi: 10.1016/0022-1759(81)90138-1. [DOI] [PubMed] [Google Scholar]
  32. Pizon V., Desjardins M., Bucci C., Parton R. G., Zerial M. Association of Rap1a and Rap1b proteins with late endocytic/phagocytic compartments and Rap2a with the Golgi complex. J Cell Sci. 1994 Jun;107(Pt 6):1661–1670. doi: 10.1242/jcs.107.6.1661. [DOI] [PubMed] [Google Scholar]
  33. Raynal P., Hullin F., Ragab-Thomas J. M., Fauvel J., Chap H. Annexin 5 as a potential regulator of annexin 1 phosphorylation by protein kinase C. In vitro inhibition compared with quantitative data on annexin distribution in human endothelial cells. Biochem J. 1993 Jun 15;292(Pt 3):759–765. doi: 10.1042/bj2920759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rothhut B., Comera C., Prieur B., Errasfa M., Minassian G., Russo-Marie F. Purification and characterization of a 32-kDa phospholipase A2 inhibitory protein (lipocortin) from human peripheral blood mononuclear cells. FEBS Lett. 1987 Jul 13;219(1):169–175. doi: 10.1016/0014-5793(87)81211-5. [DOI] [PubMed] [Google Scholar]
  35. Rubinek T., Levy R. Arachidonic acid increases the activity of the assembled NADPH oxidase in cytoplasmic membranes and endosomes. Biochim Biophys Acta. 1993 Mar 10;1176(1-2):51–58. doi: 10.1016/0167-4889(93)90176-p. [DOI] [PubMed] [Google Scholar]
  36. Serres M., Viac J., Comera C., Schmitt D. Expression of annexin I in freshly isolated human epidermal cells and in cultured keratinocytes. Arch Dermatol Res. 1994;286(5):268–272. doi: 10.1007/BF00387599. [DOI] [PubMed] [Google Scholar]
  37. Sjölin C., Stendahl O., Dahlgren C. Calcium-induced translocation of annexins to subcellular organelles of human neutrophils. Biochem J. 1994 Jun 1;300(Pt 2):325–330. doi: 10.1042/bj3000325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Tarsi-Tsuk D., Levy R. Stimulation of the respiratory burst in peripheral blood monocytes by lipoteichoic acid. The involvement of calcium ions and phospholipase A2. J Immunol. 1990 Apr 1;144(7):2665–2670. [PubMed] [Google Scholar]
  39. Väräniemi J., Huotari V., Lehto V. P., Eskelinen S. The effects of PMA and TFP and alterations in intracellular pH and calcium concentration on the membrane associations of phospholipid-binding proteins fodrin, protein kinase C and annexin II in cultured MDCK cells. Biochim Biophys Acta. 1994 Jan 3;1189(1):21–30. doi: 10.1016/0005-2736(94)90275-5. [DOI] [PubMed] [Google Scholar]
  40. Wallner B. P., Mattaliano R. J., Hession C., Cate R. L., Tizard R., Sinclair L. K., Foeller C., Chow E. P., Browing J. L., Ramachandran K. L. Cloning and expression of human lipocortin, a phospholipase A2 inhibitor with potential anti-inflammatory activity. Nature. 1986 Mar 6;320(6057):77–81. doi: 10.1038/320077a0. [DOI] [PubMed] [Google Scholar]
  41. Wang W., Creutz C. E. Regulation of the chromaffin granule aggregating activity of annexin I by phosphorylation. Biochemistry. 1992 Oct 20;31(41):9934–9939. doi: 10.1021/bi00156a011. [DOI] [PubMed] [Google Scholar]
  42. Wijkander J., Sundler R. A role for protein kinase C-mediated phosphorylation in the mobilization of arachidonic acid in mouse macrophages. Biochim Biophys Acta. 1989 Jan 17;1010(1):78–87. doi: 10.1016/0167-4889(89)90187-0. [DOI] [PubMed] [Google Scholar]
  43. William F., Mroczkowski B., Cohen S., Kraft A. S. Differentiation of HL-60 cells is associated with an increase in the 35-kDa protein lipocortin I. J Cell Physiol. 1988 Dec;137(3):402–410. doi: 10.1002/jcp.1041370303. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES