Abstract
The biologically active metabolite of vitamin D (cholecalciferol), i.e. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a secosteroid hormone whose mode of action involves stereospecific interaction with an intracellular receptor protein (vitamin D receptor; VDR). 1,25(OH)2D3 is known to be a principal regulator of calcium homeostasis, and it has numerous other physiological functions including inhibition of proliferation of cancer cells, effects on hormone secretion and suppression of T-cell proliferation and cytokine production. Although the exact mechanisms involved in mediating many of the different effects of 1,25(OH)2D3 are not completely defined, genomic actions involving the VDR are clearly of major importance. Similar to other steroid receptors, the VDR is phosphorylated; however, the exact functional role of the phosphorylation of the VDR remains to be determined. The VDR has been reported to be regulated by 1,25(OH)2D3 and also by activation of protein kinases A and C, suggesting co-operativity between signal transduction pathways and 1,25(OH)2D3 action. The VDR binds to vitamin D-responsive elements (VDREs) in the 5' flanking region of target genes. It has been suggested that VDR homodimerization can occur upon binding to certain VDREs but that the VDR/retinoid X receptor (RXR) heterodimer is the functional transactivating species. Other factors reported to be involved in VDR-mediated transcription include chicken ovalbumin upstream promoter (COUP) transcription factor, which is involved in active silencing of transcription, and transcription factor IIB, which has been suggested to play a major role following VDR/RXR heterodimerization. Newly identified vitamin D-dependent target genes include those for Ca2+/Mg(2+)-ATPase in the intestine and p21 in the myelomonocytic U937 cell line. Elucidation of the mechanisms involved in the multiple actions of 1,25(OH)2D3 will be an active area of future research.
Full Text
The Full Text of this article is available as a PDF (436.9 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alroy I., Towers T. L., Freedman L. P. Transcriptional repression of the interleukin-2 gene by vitamin D3: direct inhibition of NFATp/AP-1 complex formation by a nuclear hormone receptor. Mol Cell Biol. 1995 Oct;15(10):5789–5799. doi: 10.1128/mcb.15.10.5789. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arbour N. C., Prahl J. M., DeLuca H. F. Stabilization of the vitamin D receptor in rat osteosarcoma cells through the action of 1,25-dihydroxyvitamin D3. Mol Endocrinol. 1993 Oct;7(10):1307–1312. doi: 10.1210/mend.7.10.8264662. [DOI] [PubMed] [Google Scholar]
- Armbrecht H. J., Hodam T. L., Boltz M. A., Chen M. L. Phorbol ester markedly increases the sensitivity of intestinal epithelial cells to 1,25-dihydroxyvitamin D3. FEBS Lett. 1993 Jul 19;327(1):13–16. doi: 10.1016/0014-5793(93)81028-x. [DOI] [PubMed] [Google Scholar]
- Baker A. R., McDonnell D. P., Hughes M., Crisp T. M., Mangelsdorf D. J., Haussler M. R., Pike J. W., Shine J., O'Malley B. W. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988 May;85(10):3294–3298. doi: 10.1073/pnas.85.10.3294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Baker A. R., McDonnell D. P., Hughes M., Crisp T. M., Mangelsdorf D. J., Haussler M. R., Pike J. W., Shine J., O'Malley B. W. Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci U S A. 1988 May;85(10):3294–3298. doi: 10.1073/pnas.85.10.3294. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Barinaga M. Dimers direct development. Science. 1991 Mar 8;251(4998):1176–1177. doi: 10.1126/science.1848724. [DOI] [PubMed] [Google Scholar]
- Beaulieu C., Kestekian R., Havrankova J., Gascon-Barré M. Calcium is essential in normalizing intolerance to glucose that accompanies vitamin D depletion in vivo. Diabetes. 1993 Jan;42(1):35–43. doi: 10.2337/diab.42.1.35. [DOI] [PubMed] [Google Scholar]
- Bhalla A. K., Amento E. P., Krane S. M. Differential effects of 1,25-dihydroxyvitamin D3 on human lymphocytes and monocyte/macrophages: inhibition of interleukin-2 and augmentation of interleukin-1 production. Cell Immunol. 1986 Apr 1;98(2):311–322. doi: 10.1016/0008-8749(86)90291-1. [DOI] [PubMed] [Google Scholar]
- Bikle D. D. Clinical counterpoint: vitamin D: new actions, new analogs, new therapeutic potential. Endocr Rev. 1992 Nov;13(4):765–784. doi: 10.1210/edrv-13-4-765. [DOI] [PubMed] [Google Scholar]
- Bikle D. D., Pillai S. Vitamin D, calcium, and epidermal differentiation. Endocr Rev. 1993 Feb;14(1):3–19. doi: 10.1210/edrv-14-1-3. [DOI] [PubMed] [Google Scholar]
- Billecocq A., Emanuel J. R., Levenson R., Baron R. 1 alpha,25-dihydroxyvitamin D3 regulates the expression of carbonic anhydrase II in nonerythroid avian bone marrow cells. Proc Natl Acad Sci U S A. 1990 Aug;87(16):6470–6474. doi: 10.1073/pnas.87.16.6470. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blanco J. C., Wang I. M., Tsai S. Y., Tsai M. J., O'Malley B. W., Jurutka P. W., Haussler M. R., Ozato K. Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription. Proc Natl Acad Sci U S A. 1995 Feb 28;92(5):1535–1539. doi: 10.1073/pnas.92.5.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bodwell J. E., Ortí E., Coull J. M., Pappin D. J., Smith L. I., Swift F. Identification of phosphorylated sites in the mouse glucocorticoid receptor. J Biol Chem. 1991 Apr 25;266(12):7549–7555. [PubMed] [Google Scholar]
- Bouillon R., Okamura W. H., Norman A. W. Structure-function relationships in the vitamin D endocrine system. Endocr Rev. 1995 Apr;16(2):200–257. doi: 10.1210/edrv-16-2-200. [DOI] [PubMed] [Google Scholar]
- Brown T. A., DeLuca H. F. Phosphorylation of the 1,25-dihydroxyvitamin D3 receptor. A primary event in 1,25-dihydroxyvitamin D3 action. J Biol Chem. 1990 Jun 15;265(17):10025–10029. [PubMed] [Google Scholar]
- Brown T. A., DeLuca H. F. Sites of phosphorylation and photoaffinity labeling of the 1,25-dihydroxyvitamin D3 receptor. Arch Biochem Biophys. 1991 May 1;286(2):466–472. doi: 10.1016/0003-9861(91)90067-s. [DOI] [PubMed] [Google Scholar]
- Buratowski S. The basics of basal transcription by RNA polymerase II. Cell. 1994 Apr 8;77(1):1–3. doi: 10.1016/0092-8674(94)90226-7. [DOI] [PubMed] [Google Scholar]
- Burmester J. K., Maeda N., DeLuca H. F. Isolation and expression of rat 1,25-dihydroxyvitamin D3 receptor cDNA. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1005–1009. doi: 10.1073/pnas.85.4.1005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cai Q., Chandler J. S., Wasserman R. H., Kumar R., Penniston J. T. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1345–1349. doi: 10.1073/pnas.90.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cao X., Ross F. P., Zhang L., MacDonald P. N., Chappel J., Teitelbaum S. L. Cloning of the promoter for the avian integrin beta 3 subunit gene and its regulation by 1,25-dihydroxyvitamin D3. J Biol Chem. 1993 Dec 25;268(36):27371–27380. [PubMed] [Google Scholar]
- Carlberg C., Bendik I., Wyss A., Meier E., Sturzenbecker L. J., Grippo J. F., Hunziker W. Two nuclear signalling pathways for vitamin D. Nature. 1993 Feb 18;361(6413):657–660. doi: 10.1038/361657a0. [DOI] [PubMed] [Google Scholar]
- Chan S. D., Chiu D. K., Atkins D. Mechanism of the regulation of the 1 alpha,25-dihydroxyvitamin D3 receptor in the rat jejunum by glucocorticoids. J Endocrinol. 1984 Dec;103(3):295–300. doi: 10.1677/joe.0.1030295. [DOI] [PubMed] [Google Scholar]
- Chang P. L., Prince C. W. 1 alpha,25-Dihydroxyvitamin D3 enhances 12-O-tetradecanoylphorbol-13-acetate- induced tumorigenic transformation and osteopontin expression in mouse JB6 epidermal cells. Cancer Res. 1993 May 15;53(10 Suppl):2217–2220. [PubMed] [Google Scholar]
- Chen K. S., DeLuca H. F. Cloning of the human 1 alpha,25-dihydroxyvitamin D-3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta. 1995 Jul 25;1263(1):1–9. doi: 10.1016/0167-4781(95)00060-t. [DOI] [PubMed] [Google Scholar]
- Chen M. L., Boltz M. A., Armbrecht H. J. Effects of 1,25-dihydroxyvitamin D3 and phorbol ester on 25-hydroxyvitamin D3 24-hydroxylase cytochrome P450 messenger ribonucleic acid levels in primary cultures of rat renal cells. Endocrinology. 1993 Apr;132(4):1782–1788. doi: 10.1210/endo.132.4.7681765. [DOI] [PubMed] [Google Scholar]
- Chen T. L., Hauschka P. V., Feldman D. Dexamethasone increases 1,25-dihydroxyvitamin D3 receptor levels and augments bioresponses in rat osteoblast-like cells. Endocrinology. 1986 Mar;118(3):1119–1126. doi: 10.1210/endo-118-3-1119. [DOI] [PubMed] [Google Scholar]
- Chertow B. S., Sivitz W. I., Baranetsky N. G., Clark S. A., Waite A., Deluca H. F. Cellular mechanisms of insulin release: the effects of vitamin D deficiency and repletion on rat insulin secretion. Endocrinology. 1983 Oct;113(4):1511–1518. doi: 10.1210/endo-113-4-1511. [DOI] [PubMed] [Google Scholar]
- Cheskis B., Freedman L. P. Ligand modulates the conversion of DNA-bound vitamin D3 receptor (VDR) homodimers into VDR-retinoid X receptor heterodimers. Mol Cell Biol. 1994 May;14(5):3329–3338. doi: 10.1128/mcb.14.5.3329. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Christakos S., Gabrielides C., Rhoten W. B. Vitamin D-dependent calcium binding proteins: chemistry, distribution, functional considerations, and molecular biology. Endocr Rev. 1989 Feb;10(1):3–26. doi: 10.1210/edrv-10-1-3. [DOI] [PubMed] [Google Scholar]
- Christakos S., Norman A. W. Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun. 1979 Jul 12;89(1):56–63. doi: 10.1016/0006-291x(79)90942-2. [DOI] [PubMed] [Google Scholar]
- Clark S. A., Stumpf W. E., Sar M. Effect of 1,25 dihydroxyvitamin D3 on insulin secretion. Diabetes. 1981 May;30(5):382–386. doi: 10.2337/diab.30.5.382. [DOI] [PubMed] [Google Scholar]
- Cooney A. J., Leng X., Tsai S. Y., O'Malley B. W., Tsai M. J. Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin D, thyroid hormone, and retinoic acid receptors. J Biol Chem. 1993 Feb 25;268(6):4152–4160. [PubMed] [Google Scholar]
- Cooney A. J., Tsai S. Y., O'Malley B. W., Tsai M. J. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol Cell Biol. 1992 Sep;12(9):4153–4163. doi: 10.1128/mcb.12.9.4153. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Costa E. M., Hirst M. A., Feldman D. Regulation of 1,25-dihydroxyvitamin D3 receptors by vitamin D analogs in cultured mammalian cells. Endocrinology. 1985 Nov;117(5):2203–2210. doi: 10.1210/endo-117-5-2203. [DOI] [PubMed] [Google Scholar]
- D'Emden M. C., Wark J. D. 1,25-Dihydroxyvitamin D3 enhances thyrotropin releasing hormone induced thyrotropin secretion in normal pituitary cells. Endocrinology. 1987 Sep;121(3):1192–1194. doi: 10.1210/endo-121-3-1192. [DOI] [PubMed] [Google Scholar]
- Dahlman-Wright K., Wright A., Gustafsson J. A., Carlstedt-Duke J. Interaction of the glucocorticoid receptor DNA-binding domain with DNA as a dimer is mediated by a short segment of five amino acids. J Biol Chem. 1991 Feb 15;266(5):3107–3112. [PubMed] [Google Scholar]
- Darwish H. M., Burmester J. K., Moss V. E., DeLuca H. F. Phosphorylation is involved in transcriptional activation by the 1,25-dihydroxyvitamin D3 receptor. Biochim Biophys Acta. 1993 Mar 17;1167(1):29–36. doi: 10.1016/0005-2760(93)90213-s. [DOI] [PubMed] [Google Scholar]
- Darwish H. M., DeLuca H. F. Identification of a 1,25-dihydroxyvitamin D3-response element in the 5'-flanking region of the rat calbindin D-9k gene. Proc Natl Acad Sci U S A. 1992 Jan 15;89(2):603–607. doi: 10.1073/pnas.89.2.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Darwish H., DeLuca H. F. Vitamin D-regulated gene expression. Crit Rev Eukaryot Gene Expr. 1993;3(2):89–116. [PubMed] [Google Scholar]
- DeLuca H. F. Vitamin D-dependent calcium transport. Soc Gen Physiol Ser. 1985;39:159–176. [PubMed] [Google Scholar]
- Demay M. B., Gerardi J. M., DeLuca H. F., Kronenberg H. M. DNA sequences in the rat osteocalcin gene that bind the 1,25-dihydroxyvitamin D3 receptor and confer responsiveness to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1990 Jan;87(1):369–373. doi: 10.1073/pnas.87.1.369. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Demay M. B., Kiernan M. S., DeLuca H. F., Kronenberg H. M. Characterization of 1,25-dihydroxyvitamin D3 receptor interactions with target sequences in the rat osteocalcin gene. Mol Endocrinol. 1992 Apr;6(4):557–562. doi: 10.1210/mend.6.4.1316548. [DOI] [PubMed] [Google Scholar]
- Demay M. B., Kiernan M. S., DeLuca H. F., Kronenberg H. M. Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1992 Sep 1;89(17):8097–8101. doi: 10.1073/pnas.89.17.8097. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Denhardt D. T., Guo X. Osteopontin: a protein with diverse functions. FASEB J. 1993 Dec;7(15):1475–1482. [PubMed] [Google Scholar]
- Farach-Carson M. C., Sergeev I., Norman A. W. Nongenomic actions of 1,25-dihydroxyvitamin D3 in rat osteosarcoma cells: structure-function studies using ligand analogs. Endocrinology. 1991 Oct;129(4):1876–1884. doi: 10.1210/endo-129-4-1876. [DOI] [PubMed] [Google Scholar]
- Feher J. J. Facilitated calcium diffusion by intestinal calcium-binding protein. Am J Physiol. 1983 Mar;244(3):C303–C307. doi: 10.1152/ajpcell.1983.244.3.C303. [DOI] [PubMed] [Google Scholar]
- Frampton R. J., Omond S. A., Eisman J. A. Inhibition of human cancer cell growth by 1,25-dihydroxyvitamin D3 metabolites. Cancer Res. 1983 Sep;43(9):4443–4447. [PubMed] [Google Scholar]
- Freedman L. P. Anatomy of the steroid receptor zinc finger region. Endocr Rev. 1992 May;13(2):129–145. doi: 10.1210/edrv-13-2-129. [DOI] [PubMed] [Google Scholar]
- Freedman L. P., Arce V., Perez Fernandez R. DNA sequences that act as high affinity targets for the vitamin D3 receptor in the absence of the retinoid X receptor. Mol Endocrinol. 1994 Mar;8(3):265–273. doi: 10.1210/mend.8.3.8015545. [DOI] [PubMed] [Google Scholar]
- Freedman L. P., Towers T. L. DNA binding properties of the vitamin D3 receptor zinc finger region. Mol Endocrinol. 1991 Dec;5(12):1815–1826. doi: 10.1210/mend-5-12-1815. [DOI] [PubMed] [Google Scholar]
- Gill R. K., Christakos S. Identification of sequence elements in mouse calbindin-D28k gene that confer 1,25-dihydroxyvitamin D3- and butyrate-inducible responses. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2984–2988. doi: 10.1073/pnas.90.7.2984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hahn C. N., Kerry D. M., Omdahl J. L., May B. K. Identification of a vitamin D responsive element in the promoter of the rat cytochrome P450(24) gene. Nucleic Acids Res. 1994 Jun 25;22(12):2410–2416. doi: 10.1093/nar/22.12.2410. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hannah S. S., Norman A. W. 1 alpha,25(OH)2 vitamin D3-regulated expression of the eukaryotic genome. Nutr Rev. 1994 Nov;52(11):376–382. doi: 10.1111/j.1753-4887.1994.tb01368.x. [DOI] [PubMed] [Google Scholar]
- Hauschka P. V., Lian J. B., Cole D. E., Gundberg C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989 Jul;69(3):990–1047. doi: 10.1152/physrev.1989.69.3.990. [DOI] [PubMed] [Google Scholar]
- Hawa N. S., O'Riordan J. L., Farrow S. M. Binding of 1,25-dihydroxyvitamin D3 receptors to the 5'-flanking region of the bovine parathyroid hormone gene. J Endocrinol. 1994 Jul;142(1):53–60. doi: 10.1677/joe.0.1420053. [DOI] [PubMed] [Google Scholar]
- Henry H. L., Norman A. W. Studies on calciferol metabolism. IX. Renal 25-hydroxy-vitamin D3-1 hydroxylase. Involvement of cytochrome P-450 and other properties. J Biol Chem. 1974 Dec 10;249(23):7529–7535. [PubMed] [Google Scholar]
- Hilliard G. M., 4th, Cook R. G., Weigel N. L., Pike J. W. 1,25-dihydroxyvitamin D3 modulates phosphorylation of serine 205 in the human vitamin D receptor: site-directed mutagenesis of this residue promotes alternative phosphorylation. Biochemistry. 1994 Apr 12;33(14):4300–4311. doi: 10.1021/bi00180a026. [DOI] [PubMed] [Google Scholar]
- Hirst M., Feldman D. Glucocorticoid regulation of 1,25(OH)2vitamin D3 receptors: divergent effects on mouse and rat intestine. Endocrinology. 1982 Oct;111(4):1400–1402. doi: 10.1210/endo-111-4-1400. [DOI] [PubMed] [Google Scholar]
- Hong M. H., Jin C. H., Sato T., Ishimi Y., Abe E., Suda T. Transcriptional regulation of the production of the third component of complement (C3) by 1 alpha,25-dihydroxyvitamin D3 in mouse marrow-derived stromal cells (ST2) and primary osteoblastic cells. Endocrinology. 1991 Nov;129(5):2774–2779. doi: 10.1210/endo-129-5-2774. [DOI] [PubMed] [Google Scholar]
- Hsieh J. C., Jurutka P. W., Galligan M. A., Terpening C. M., Haussler C. A., Samuels D. S., Shimizu Y., Shimizu N., Haussler M. R. Human vitamin D receptor is selectively phosphorylated by protein kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci U S A. 1991 Oct 15;88(20):9315–9319. doi: 10.1073/pnas.88.20.9315. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Y. C., Lee S., Stolz R., Gabrielides C., Pansini-Porta A., Bruns M. E., Bruns D. E., Miffin T. E., Pike J. W., Christakos S. Effect of hormones and development on the expression of the rat 1,25-dihydroxyvitamin D3 receptor gene. Comparison with calbindin gene expression. J Biol Chem. 1989 Oct 15;264(29):17454–17461. [PubMed] [Google Scholar]
- Jin C. H., Shinki T., Hong M. H., Sato T., Yamaguchi A., Ikeda T., Yoshiki S., Abe E., Suda T. 1 alpha,25-dihydroxyvitamin D3 regulates in vivo production of the third component of complement (C3) in bone. Endocrinology. 1992 Nov;131(5):2468–2475. doi: 10.1210/endo.131.5.1425444. [DOI] [PubMed] [Google Scholar]
- Jones B. B., Jurutka P. W., Haussler C. A., Haussler M. R., Whitfield G. K. Vitamin D receptor phosphorylation in transfected ROS 17/2.8 cells is localized to the N-terminal region of the hormone-binding domain. Mol Endocrinol. 1991 Aug;5(8):1137–1146. doi: 10.1210/mend-5-8-1137. [DOI] [PubMed] [Google Scholar]
- Jurutka P. W., Hsieh J. C., MacDonald P. N., Terpening C. M., Haussler C. A., Haussler M. R., Whitfield G. K. Phosphorylation of serine 208 in the human vitamin D receptor. The predominant amino acid phosphorylated by casein kinase II, in vitro, and identification as a significant phosphorylation site in intact cells. J Biol Chem. 1993 Mar 25;268(9):6791–6799. [PubMed] [Google Scholar]
- Kadowaki S., Norman A. W. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas. J Clin Invest. 1984 Mar;73(3):759–766. doi: 10.1172/JCI111269. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kawaguchi N., DeLuca H. F., Noda M. Id gene expression and its suppression by 1,25-dihydroxyvitamin D3 in rat osteoblastic osteosarcoma cells. Proc Natl Acad Sci U S A. 1992 May 15;89(10):4569–4572. doi: 10.1073/pnas.89.10.4569. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kerner S. A., Scott R. A., Pike J. W. Sequence elements in the human osteocalcin gene confer basal activation and inducible response to hormonal vitamin D3. Proc Natl Acad Sci U S A. 1989 Jun;86(12):4455–4459. doi: 10.1073/pnas.86.12.4455. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Krishnan A. V., Cramer S. D., Bringhurst F. R., Feldman D. Regulation of 1,25-dihydroxyvitamin D3 receptors by parathyroid hormone in osteoblastic cells: role of second messenger pathways. Endocrinology. 1995 Feb;136(2):705–712. doi: 10.1210/endo.136.2.7835303. [DOI] [PubMed] [Google Scholar]
- Krishnan A. V., Feldman D. Activation of protein kinase-C inhibits vitamin D receptor gene expression. Mol Endocrinol. 1991 Apr;5(4):605–612. doi: 10.1210/mend-5-4-605. [DOI] [PubMed] [Google Scholar]
- Krishnan A. V., Feldman D. Cyclic adenosine 3',5'-monophosphate up-regulates 1,25-dihydroxyvitamin D3 receptor gene expression and enhances hormone action. Mol Endocrinol. 1992 Feb;6(2):198–206. doi: 10.1210/mend.6.2.1314957. [DOI] [PubMed] [Google Scholar]
- Lee S., Clark S. A., Gill R. K., Christakos S. 1,25-Dihydroxyvitamin D3 and pancreatic beta-cell function: vitamin D receptors, gene expression, and insulin secretion. Endocrinology. 1994 Apr;134(4):1602–1610. doi: 10.1210/endo.134.4.8137721. [DOI] [PubMed] [Google Scholar]
- Lee S., Szlachetka M., Christakos S. Effect of glucocorticoids and 1,25-dihydroxyvitamin D3 on the developmental expression of the rat intestinal vitamin D receptor gene. Endocrinology. 1991 Jul;129(1):396–401. doi: 10.1210/endo-129-1-396. [DOI] [PubMed] [Google Scholar]
- Lee Y., Inaba M., DeLuca H. F., Mellon W. S. Immunological identification of 1,25-dihydroxyvitamin D3 receptors in human promyelocytic leukemic cells (HL-60) during homologous regulation. J Biol Chem. 1989 Aug 15;264(23):13701–13705. [PubMed] [Google Scholar]
- Liao J., Ozono K., Sone T., McDonnell D. P., Pike J. W. Vitamin D receptor interaction with specific DNA requires a nuclear protein and 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9751–9755. doi: 10.1073/pnas.87.24.9751. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Liu M., Lee M. H., Cohen M., Bommakanti M., Freedman L. P. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Genes Dev. 1996 Jan 15;10(2):142–153. doi: 10.1101/gad.10.2.142. [DOI] [PubMed] [Google Scholar]
- Luisi B. F., Xu W. X., Otwinowski Z., Freedman L. P., Yamamoto K. R., Sigler P. B. Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA. Nature. 1991 Aug 8;352(6335):497–505. doi: 10.1038/352497a0. [DOI] [PubMed] [Google Scholar]
- MacDonald P. N., Dowd D. R., Haussler M. R. New insight into the structure and functions of the vitamin D receptor. Semin Nephrol. 1994 Mar;14(2):101–118. [PubMed] [Google Scholar]
- MacDonald P. N., Dowd D. R., Nakajima S., Galligan M. A., Reeder M. C., Haussler C. A., Ozato K., Haussler M. R. Retinoid X receptors stimulate and 9-cis retinoic acid inhibits 1,25-dihydroxyvitamin D3-activated expression of the rat osteocalcin gene. Mol Cell Biol. 1993 Sep;13(9):5907–5917. doi: 10.1128/mcb.13.9.5907. [DOI] [PMC free article] [PubMed] [Google Scholar]
- MacDonald P. N., Haussler C. A., Terpening C. M., Galligan M. A., Reeder M. C., Whitfield G. K., Haussler M. R. Baculovirus-mediated expression of the human vitamin D receptor. Functional characterization, vitamin D response element interactions, and evidence for a receptor auxiliary factor. J Biol Chem. 1991 Oct 5;266(28):18808–18813. [PubMed] [Google Scholar]
- MacDonald P. N., Sherman D. R., Dowd D. R., Jefcoat S. C., Jr, DeLisle R. K. The vitamin D receptor interacts with general transcription factor IIB. J Biol Chem. 1995 Mar 3;270(9):4748–4752. doi: 10.1074/jbc.270.9.4748. [DOI] [PubMed] [Google Scholar]
- MacLaughlin J. A., Cantley L. C., Holick M. F. 1,25(OH)2D3 increases calcium and phosphatidylinositol metabolism in differentiating cultured human keratinocytes. J Nutr Biochem. 1990 Feb;1(2):81–87. doi: 10.1016/0955-2863(90)90054-o. [DOI] [PubMed] [Google Scholar]
- Mangelsdorf D. J., Pike J. W., Haussler M. R. Avian and mammalian receptors for 1,25-dihydroxyvitamin D3: in vitro translation to characterize size and hormone-dependent regulation. Proc Natl Acad Sci U S A. 1987 Jan;84(2):354–358. doi: 10.1073/pnas.84.2.354. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Manolagas S. C., Yu X. P., Girasole G., Bellido T. Vitamin D and the hematolymphopoietic tissue: a 1994 update. Semin Nephrol. 1994 Mar;14(2):129–143. [PubMed] [Google Scholar]
- Markose E. R., Stein J. L., Stein G. S., Lian J. B. Vitamin D-mediated modifications in protein-DNA interactions at two promoter elements of the osteocalcin gene. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1701–1705. doi: 10.1073/pnas.87.5.1701. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Massaro E. R., Simpson R. U., DeLuca H. F. Stimulation of specific 1,25-dihydroxyvitamin D3 binding protein in cultured postnatal rat intestine by hydrocortisone. J Biol Chem. 1982 Nov 25;257(22):13736–13739. [PubMed] [Google Scholar]
- Matkovits T., Christakos S. Ligand occupancy is not required for vitamin D receptor and retinoid receptor-mediated transcriptional activation. Mol Endocrinol. 1995 Feb;9(2):232–242. doi: 10.1210/mend.9.2.7776973. [DOI] [PubMed] [Google Scholar]
- Matkovits T., Christakos S. Variable in vivo regulation of rat vitamin D-dependent genes (osteopontin, Ca,Mg-adenosine triphosphatase, and 25-hydroxyvitamin D3 24-hydroxylase): implications for differing mechanisms of regulation and involvement of multiple factors. Endocrinology. 1995 Sep;136(9):3971–3982. doi: 10.1210/endo.136.9.7649106. [DOI] [PubMed] [Google Scholar]
- McDonnell D. P., Mangelsdorf D. J., Pike J. W., Haussler M. R., O'Malley B. W. Molecular cloning of complementary DNA encoding the avian receptor for vitamin D. Science. 1987 Mar 6;235(4793):1214–1217. doi: 10.1126/science.3029866. [DOI] [PubMed] [Google Scholar]
- McDonnell D. P., Scott R. A., Kerner S. A., O'Malley B. W., Pike J. W. Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol. 1989 Apr;3(4):635–644. doi: 10.1210/mend-3-4-635. [DOI] [PubMed] [Google Scholar]
- McSheehy P. M., Chambers T. J. 1,25-Dihydroxyvitamin D3 stimulates rat osteoblastic cells to release a soluble factor that increases osteoclastic bone resorption. J Clin Invest. 1987 Aug;80(2):425–429. doi: 10.1172/JCI113089. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Medhora M. M., Teitelbaum S., Chappel J., Alvarez J., Mimura H., Ross F. P., Hruska K. 1 alpha,25-dihydroxyvitamin D3 up-regulates expression of the osteoclast integrin alpha v beta 3. J Biol Chem. 1993 Jan 15;268(2):1456–1461. [PubMed] [Google Scholar]
- Meyer J., Fullmer C. S., Wasserman R. H., Komm B. S., Haussler M. R. Dietary restriction of calcium, phosphorus, and vitamin D elicits differential regulation of the mRNAs for avian intestinal calbindin-D28k and the 1,25-dihydroxyvitamin D3 receptor. J Bone Miner Res. 1992 Apr;7(4):441–448. doi: 10.1002/jbmr.5650070412. [DOI] [PubMed] [Google Scholar]
- Migliaccio A., Di Domenico M., Green S., de Falco A., Kajtaniak E. L., Blasi F., Chambon P., Auricchio F. Phosphorylation on tyrosine of in vitro synthesized human estrogen receptor activates its hormone binding. Mol Endocrinol. 1989 Jul;3(7):1061–1069. doi: 10.1210/mend-3-7-1061. [DOI] [PubMed] [Google Scholar]
- Morrison N. A., Shine J., Fragonas J. C., Verkest V., McMenemy M. L., Eisman J. A. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Science. 1989 Dec 1;246(4934):1158–1161. doi: 10.1126/science.2588000. [DOI] [PubMed] [Google Scholar]
- Murdoch G. H., Rosenfeld M. G. Regulation of pituitary function and prolactin production in the GH4 cell line by vitamin D. J Biol Chem. 1981 Apr 25;256(8):4050–4053. [PubMed] [Google Scholar]
- Nakajima S., Hsieh J. C., MacDonald P. N., Galligan M. A., Haussler C. A., Whitfield G. K., Haussler M. R. The C-terminal region of the vitamin D receptor is essential to form a complex with a receptor auxiliary factor required for high affinity binding to the vitamin D-responsive element. Mol Endocrinol. 1994 Feb;8(2):159–172. doi: 10.1210/mend.8.2.8170472. [DOI] [PubMed] [Google Scholar]
- Nishikawa J., Kitaura M., Matsumoto M., Imagawa M., Nishihara T. Difference and similarity of DNA sequence recognized by VDR homodimer and VDR/RXR heterodimer. Nucleic Acids Res. 1994 Aug 11;22(15):2902–2907. doi: 10.1093/nar/22.15.2902. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishikawa J., Matsumoto M., Sakoda K., Kitaura M., Imagawa M., Nishihara T. Vitamin D receptor zinc finger region binds to a direct repeat as a dimer and discriminates the spacing number between each half-site. J Biol Chem. 1993 Sep 15;268(26):19739–19743. [PubMed] [Google Scholar]
- Noda M., Vogel R. L., Craig A. M., Prahl J., DeLuca H. F., Denhardt D. T. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9995–9999. doi: 10.1073/pnas.87.24.9995. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Norman A. W., Frankel J. B., Heldt A. M., Grodsky G. M. Vitamin D deficiency inhibits pancreatic secretion of insulin. Science. 1980 Aug 15;209(4458):823–825. doi: 10.1126/science.6250216. [DOI] [PubMed] [Google Scholar]
- Ohyama Y., Ozono K., Uchida M., Shinki T., Kato S., Suda T., Yamamoto O., Noshiro M., Kato Y. Identification of a vitamin D-responsive element in the 5'-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem. 1994 Apr 8;269(14):10545–10550. [PubMed] [Google Scholar]
- Owen T. A., Bortell R., Shalhoub V., Heinrichs A., Stein J. L., Stein G. S., Lian J. B. Postproliferative transcription of the rat osteocalcin gene is reflected by vitamin D-responsive developmental modifications in protein-DNA interactions at basal and enhancer promoter elements. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1503–1507. doi: 10.1073/pnas.90.4.1503. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Owen T. A., Bortell R., Yocum S. A., Smock S. L., Zhang M., Abate C., Shalhoub V., Aronin N., Wright K. L., van Wijnen A. J. Coordinate occupancy of AP-1 sites in the vitamin D-responsive and CCAAT box elements by Fos-Jun in the osteocalcin gene: model for phenotype suppression of transcription. Proc Natl Acad Sci U S A. 1990 Dec;87(24):9990–9994. doi: 10.1073/pnas.87.24.9990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ozono K., Liao J., Kerner S. A., Scott R. A., Pike J. W. The vitamin D-responsive element in the human osteocalcin gene. Association with a nuclear proto-oncogene enhancer. J Biol Chem. 1990 Dec 15;265(35):21881–21888. [PubMed] [Google Scholar]
- Pannabecker T. L., Chandler J. S., Wasserman R. H. Vitamin-D-dependent transcriptional regulation of the intestinal plasma membrane calcium pump. Biochem Biophys Res Commun. 1995 Aug 15;213(2):499–505. doi: 10.1006/bbrc.1995.2159. [DOI] [PubMed] [Google Scholar]
- Peehl D. M., Skowronski R. J., Leung G. K., Wong S. T., Stamey T. A., Feldman D. Antiproliferative effects of 1,25-dihydroxyvitamin D3 on primary cultures of human prostatic cells. Cancer Res. 1994 Feb 1;54(3):805–810. [PubMed] [Google Scholar]
- Pike J. W., Sleator N. M. Hormone-dependent phosphorylation of the 1,25-dihydroxyvitamin D3 receptor in mouse fibroblasts. Biochem Biophys Res Commun. 1985 Aug 30;131(1):378–385. doi: 10.1016/0006-291x(85)91813-3. [DOI] [PubMed] [Google Scholar]
- Pike J. W. Vitamin D3 receptors: structure and function in transcription. Annu Rev Nutr. 1991;11:189–216. doi: 10.1146/annurev.nu.11.070191.001201. [DOI] [PubMed] [Google Scholar]
- Power R. F., Mani S. K., Codina J., Conneely O. M., O'Malley B. W. Dopaminergic and ligand-independent activation of steroid hormone receptors. Science. 1991 Dec 13;254(5038):1636–1639. doi: 10.1126/science.1749936. [DOI] [PubMed] [Google Scholar]
- Raisz L. G., Trummel C. L., Holick M. F., DeLuca H. F. 1,25-dihydroxycholecalciferol: a potent stimulator of bone resorption in tissue culture. Science. 1972 Feb 18;175(4023):768–769. doi: 10.1126/science.175.4023.768. [DOI] [PubMed] [Google Scholar]
- Reinhardt T. A., Horst R. L. Parathyroid hormone down-regulates 1,25-dihydroxyvitamin D receptors (VDR) and VDR messenger ribonucleic acid in vitro and blocks homologous up-regulation of VDR in vivo. Endocrinology. 1990 Aug;127(2):942–948. doi: 10.1210/endo-127-2-942. [DOI] [PubMed] [Google Scholar]
- Reinhardt T. A., Horst R. L. Phorbol 12-myristate 13-acetate and 1,25-dihydroxyvitamin D3 regulate 1,25-dihydroxyvitamin D3 receptors synergistically in rat osteosarcoma cells. Mol Cell Endocrinol. 1994 May;101(1-2):159–165. doi: 10.1016/0303-7207(94)90230-5. [DOI] [PubMed] [Google Scholar]
- Rigby W. F., Denome S., Fanger M. W. Regulation of lymphokine production and human T lymphocyte activation by 1,25-dihydroxyvitamin D3. Specific inhibition at the level of messenger RNA. J Clin Invest. 1987 Jun;79(6):1659–1664. doi: 10.1172/JCI113004. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rosen E. D., Beninghof E. G., Koenig R. J. Dimerization interfaces of thyroid hormone, retinoic acid, vitamin D, and retinoid X receptors. J Biol Chem. 1993 Jun 5;268(16):11534–11541. [PubMed] [Google Scholar]
- Ross T. K., Moss V. E., Prahl J. M., DeLuca H. F. A nuclear protein essential for binding of rat 1,25-dihydroxyvitamin D3 receptor to its response elements. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):256–260. doi: 10.1073/pnas.89.1.256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Santiso-Mere D., Sone T., Hilliard G. M., 4th, Pike J. W., McDonnell D. P. Positive regulation of the vitamin D receptor by its cognate ligand in heterologous expression systems. Mol Endocrinol. 1993 Jul;7(7):833–839. doi: 10.1210/mend.7.7.8413308. [DOI] [PubMed] [Google Scholar]
- Sato T., Hong M. H., Jin C. H., Ishimi Y., Udagawa N., Shinki T., Abe E., Suda T. The specific production of the third component of complement by osteoblastic cells treated with 1 alpha,25-dihydroxyvitamin D3. FEBS Lett. 1991 Jul 8;285(1):21–24. doi: 10.1016/0014-5793(91)80715-f. [DOI] [PubMed] [Google Scholar]
- Schräder M., Bendik I., Becker-André M., Carlberg C. Interaction between retinoic acid and vitamin D signaling pathways. J Biol Chem. 1993 Aug 25;268(24):17830–17836. [PubMed] [Google Scholar]
- Schräder M., Müller K. M., Carlberg C. Specificity and flexibility of vitamin D signaling. Modulation of the activation of natural vitamin D response elements by thyroid hormone. J Biol Chem. 1994 Feb 25;269(8):5501–5504. [PubMed] [Google Scholar]
- Schräder M., Müller K. M., Nayeri S., Kahlen J. P., Carlberg C. Vitamin D3-thyroid hormone receptor heterodimer polarity directs ligand sensitivity of transactivation. Nature. 1994 Aug 4;370(6488):382–386. doi: 10.1038/370382a0. [DOI] [PubMed] [Google Scholar]
- Schüle R., Umesono K., Mangelsdorf D. J., Bolado J., Pike J. W., Evans R. M. Jun-Fos and receptors for vitamins A and D recognize a common response element in the human osteocalcin gene. Cell. 1990 May 4;61(3):497–504. doi: 10.1016/0092-8674(90)90531-i. [DOI] [PubMed] [Google Scholar]
- Shabahang M., Buras R. R., Davoodi F., Schumaker L. M., Nauta R. J., Uskokovic M. R., Brenner R. V., Evans S. R. Growth inhibition of HT-29 human colon cancer cells by analogues of 1,25-dihydroxyvitamin D3. Cancer Res. 1994 Aug 1;54(15):4057–4064. [PubMed] [Google Scholar]
- Sheridan P. L., Evans R. M., Horwitz K. B. Phosphotryptic peptide analysis of human progesterone receptor. New phosphorylated sites formed in nuclei after hormone treatment. J Biol Chem. 1989 Apr 15;264(11):6520–6528. [PubMed] [Google Scholar]
- Shinki T., Jin C. H., Nishimura A., Nagai Y., Ohyama Y., Noshiro M., Okuda K., Suda T. Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1 alpha,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem. 1992 Jul 5;267(19):13757–13762. [PubMed] [Google Scholar]
- Smith E. L., Walworth N. C., Holick M. F. Effect of 1 alpha,25-dihydroxyvitamin D3 on the morphologic and biochemical differentiation of cultured human epidermal keratinocytes grown in serum-free conditions. J Invest Dermatol. 1986 Jun;86(6):709–714. doi: 10.1111/1523-1747.ep12276343. [DOI] [PubMed] [Google Scholar]
- Sone T., Kerner S., Pike J. W. Vitamin D receptor interaction with specific DNA. Association as a 1,25-dihydroxyvitamin D3-modulated heterodimer. J Biol Chem. 1991 Dec 5;266(34):23296–23305. [PubMed] [Google Scholar]
- Sone T., McDonnell D. P., O'Malley B. W., Pike J. W. Expression of human vitamin D receptor in Saccharomyces cerevisiae. Purification, properties, and generation of polyclonal antibodies. J Biol Chem. 1990 Dec 15;265(35):21997–22003. [PubMed] [Google Scholar]
- Sone T., Ozono K., Pike J. W. A 55-kilodalton accessory factor facilitates vitamin D receptor DNA binding. Mol Endocrinol. 1991 Nov;5(11):1578–1586. doi: 10.1210/mend-5-11-1578. [DOI] [PubMed] [Google Scholar]
- Strom M., Sandgren M. E., Brown T. A., DeLuca H. F. 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9770–9773. doi: 10.1073/pnas.86.24.9770. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Strömstedt P. E., Poellinger L., Gustafsson J. A., Carlstedt-Duke J. The glucocorticoid receptor binds to a sequence overlapping the TATA box of the human osteocalcin promoter: a potential mechanism for negative regulation. Mol Cell Biol. 1991 Jun;11(6):3379–3383. doi: 10.1128/mcb.11.6.3379. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Su M. J., Bikle D. D., Mancianti M. L., Pillai S. 1,25-Dihydroxyvitamin D3 potentiates the keratinocyte response to calcium. J Biol Chem. 1994 May 20;269(20):14723–14729. [PubMed] [Google Scholar]
- Suda T., Shinki T., Takahashi N. The role of vitamin D in bone and intestinal cell differentiation. Annu Rev Nutr. 1990;10:195–211. doi: 10.1146/annurev.nu.10.070190.001211. [DOI] [PubMed] [Google Scholar]
- Suda T. The role of 1 alpha,25-dihydroxyvitamin D3 in the myeloid cell differentiation. Proc Soc Exp Biol Med. 1989 Jul;191(3):214–220. doi: 10.3181/00379727-191-42911. [DOI] [PubMed] [Google Scholar]
- Tanaka Y., Seino Y., Ishida M., Yamaoka K., Satomura K., Yabuuchi H., Seino Y., Imura H. Effect of 1,25-dihydroxyvitamin D3 on insulin secretion: direct or mediated? Endocrinology. 1986 May;118(5):1971–1976. doi: 10.1210/endo-118-5-1971. [DOI] [PubMed] [Google Scholar]
- Terpening C. M., Haussler C. A., Jurutka P. W., Galligan M. A., Komm B. S., Haussler M. R. The vitamin D-responsive element in the rat bone Gla protein gene is an imperfect direct repeat that cooperates with other cis-elements in 1,25-dihydroxyvitamin D3- mediated transcriptional activation. Mol Endocrinol. 1991 Mar;5(3):373–385. doi: 10.1210/mend-5-3-373. [DOI] [PubMed] [Google Scholar]
- Towers T. L., Luisi B. F., Asianov A., Freedman L. P. DNA target selectivity by the vitamin D3 receptor: mechanism of dimer binding to an asymmetric repeat element. Proc Natl Acad Sci U S A. 1993 Jul 1;90(13):6310–6314. doi: 10.1073/pnas.90.13.6310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsoukas C. D., Provvedini D. M., Manolagas S. C. 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. Science. 1984 Jun 29;224(4656):1438–1440. doi: 10.1126/science.6427926. [DOI] [PubMed] [Google Scholar]
- Umesono K., Murakami K. K., Thompson C. C., Evans R. M. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell. 1991 Jun 28;65(7):1255–1266. doi: 10.1016/0092-8674(91)90020-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Underwood J. L., DeLuca H. F. Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol. 1984 Jun;246(6 Pt 1):E493–E498. doi: 10.1152/ajpendo.1984.246.6.E493. [DOI] [PubMed] [Google Scholar]
- Walters M. R. Newly identified actions of the vitamin D endocrine system. Endocr Rev. 1992 Nov;13(4):719–764. doi: 10.1210/edrv-13-4-719. [DOI] [PubMed] [Google Scholar]
- Wang L. H., Ing N. H., Tsai S. Y., O'Malley B. W., Tsai M. J. The COUP-TFs compose a family of functionally related transcription factors. Gene Expr. 1991;1(3):207–216. [PMC free article] [PubMed] [Google Scholar]
- Wark J. D., Tashjian A. H., Jr Vitamin D stimulates prolactin synthesis by GH4C1 cells incubated in chemically defined medium. Endocrinology. 1982 Nov;111(5):1755–1757. doi: 10.1210/endo-111-5-1755. [DOI] [PubMed] [Google Scholar]
- Washburn T., Hocutt A., Brautigan D. L., Korach K. S. Uterine estrogen receptor in vivo: phosphorylation of nuclear specific forms on serine residues. Mol Endocrinol. 1991 Feb;5(2):235–242. doi: 10.1210/mend-5-2-235. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Fullmer C. S. Calcium transport proteins, calcium absorption, and vitamin D. Annu Rev Physiol. 1983;45:375–390. doi: 10.1146/annurev.ph.45.030183.002111. [DOI] [PubMed] [Google Scholar]
- Wasserman R. H., Smith C. A., Brindak M. E., De Talamoni N., Fullmer C. S., Penniston J. T., Kumar R. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine. Gastroenterology. 1992 Mar;102(3):886–894. doi: 10.1016/0016-5085(92)90174-w. [DOI] [PubMed] [Google Scholar]
- Weishaar R. E., Simpson R. U. The involvement of the endocrine system in regulating cardiovascular function: emphasis on vitamin D3. Endocr Rev. 1989 Aug;10(3):351–365. doi: 10.1210/edrv-10-3-351. [DOI] [PubMed] [Google Scholar]
- Whitfield G. K., Hsieh J. C., Nakajima S., MacDonald P. N., Thompson P. D., Jurutka P. W., Haussler C. A., Haussler M. R. A highly conserved region in the hormone-binding domain of the human vitamin D receptor contains residues vital for heterodimerization with retinoid X receptor and for transcriptional activation. Mol Endocrinol. 1995 Sep;9(9):1166–1179. doi: 10.1210/mend.9.9.7491109. [DOI] [PubMed] [Google Scholar]
- Wiese R. J., Uhland-Smith A., Ross T. K., Prahl J. M., DeLuca H. F. Up-regulation of the vitamin D receptor in response to 1,25-dihydroxyvitamin D3 results from ligand-induced stabilization. J Biol Chem. 1992 Oct 5;267(28):20082–20086. [PubMed] [Google Scholar]
- Yoon K. G., Rutledge S. J., Buenaga R. F., Rodan G. A. Characterization of the rat osteocalcin gene: stimulation of promoter activity by 1,25-dihydroxyvitamin D3. Biochemistry. 1988 Nov 15;27(23):8521–8526. doi: 10.1021/bi00423a003. [DOI] [PubMed] [Google Scholar]
- Zelinski J. M., Sykes D. E., Weiser M. M. The effect of vitamin D on rat intestinal plasma membrane CA-pump mRNA. Biochem Biophys Res Commun. 1991 Sep 16;179(2):749–755. doi: 10.1016/0006-291x(91)91880-l. [DOI] [PubMed] [Google Scholar]
- Zhou J. Y., Norman A. W., Chen D. L., Sun G. W., Uskokovic M., Koeffler H. P. 1,25-Dihydroxy-16-ene-23-yne-vitamin D3 prolongs survival time of leukemic mice. Proc Natl Acad Sci U S A. 1990 May;87(10):3929–3932. doi: 10.1073/pnas.87.10.3929. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zierold C., Darwish H. M., DeLuca H. F. Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):900–902. doi: 10.1073/pnas.91.3.900. [DOI] [PMC free article] [PubMed] [Google Scholar]
- d'Emden M. C., Wark J. D. Vitamin D-enhanced thyrotrophin release from rat pituitary cells: effects of Ca2+, dihydropyridines and ionomycin. J Endocrinol. 1989 Jun;121(3):441–450. doi: 10.1677/joe.0.1210441. [DOI] [PubMed] [Google Scholar]
- van Laar J. H., Berrevoets C. A., Trapman J., Zegers N. D., Brinkmann A. O. Hormone-dependent androgen receptor phosphorylation is accompanied by receptor transformation in human lymph node carcinoma of the prostate cells. J Biol Chem. 1991 Feb 25;266(6):3734–3738. [PubMed] [Google Scholar]
- van Leeuwen J. P., Birkenhäger J. C., Buurman C. J., van den Bemd G. J., Bos M. P., Pols H. A. Bidirectional regulation of the 1,25-dihydroxyvitamin D3 receptor by phorbol ester-activated protein kinase-C in osteoblast-like cells: interaction with adenosine 3',5'-monophosphate-induced up-regulation of the 1,25-dihydroxyvitamin D3 receptor. Endocrinology. 1992 Apr;130(4):2259–2266. doi: 10.1210/endo.130.4.1312452. [DOI] [PubMed] [Google Scholar]
- van Leeuwen J. P., Pols H. A., Schilte J. P., Visser T. J., Birkenhäger J. C. Modulation by epidermal growth factor of the basal 1,25(OH)2D3 receptor level and the heterologous up-regulation of the 1,25(OH)2D3 receptor in clonal osteoblast-like cells. Calcif Tissue Int. 1991 Jul;49(1):35–42. doi: 10.1007/BF02555900. [DOI] [PubMed] [Google Scholar]