Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 1;316(Pt 2):401–407. doi: 10.1042/bj3160401

Subpopulations of proteasomes in rat liver nuclei, microsomes and cytosol.

A Palmer 1, A J Rivett 1, S Thomson 1, K B Hendil 1, G W Butcher 1, G Fuertes 1, E Knecht 1
PMCID: PMC1217364  PMID: 8687380

Abstract

Mammalian proteasomes are composed of 14-17 different types of subunits, some of which, including major-histocompatibility-complex-encoded subunits LMP2 and LMP7, are non-essential and present in variable amounts. We have investigated the distribution of total proteasomes and some individual subunits in rat liver by quantitative immunoblot analysis of purified subcellular fractions (nuclei, mitochondria, microsomes and cytosol). Proteasomes were mainly found in the cytosol but were also present in the purified nuclear and microsomal fractions. In the nuclei, proteasomes were soluble or loosely attached to the chromatin, since they could be easily extracted by treatment with nucleases or high concentrations of salt. In the microsomes, proteasomes were on the outside of the membranes. Further subfractionation of the microsomes showed that the proteasomes in this fraction were associated with the smooth endoplasmic reticulum and with the cis-Golgi but were practically absent from the rough endoplasmic reticulum. Using monospecific antibodies for some proteasomal subunits (C8, C9, LMP2 and Z), the composition of proteasomes in nuclei, microsomes and cytosol was investigated. Although there appear not to be differences in proteasome composition in the alpha subunits (C8 and C9) in the different locations, the relative amounts of some beta subunits varied. Subunit Z was enriched in nuclear proteasomes but low in microsome-associated proteasomes, whereas LMP2, which was relatively low in nuclei, showed a small enrichment in the microsomes. These differences in subunit composition of proteasomes probably reflect differences in the function of proteasomes in distinct cell compartments.

Full Text

The Full Text of this article is available as a PDF (499.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akiyama K., Kagawa S., Tamura T., Shimbara N., Takashina M., Kristensen P., Hendil K. B., Tanaka K., Ichihara A. Replacement of proteasome subunits X and Y by LMP7 and LMP2 induced by interferon-gamma for acquirement of the functional diversity responsible for antigen processing. FEBS Lett. 1994 Apr 18;343(1):85–88. doi: 10.1016/0014-5793(94)80612-8. [DOI] [PubMed] [Google Scholar]
  2. Amsterdam A., Pitzer F., Baumeister W. Changes in intracellular localization of proteasomes in immortalized ovarian granulosa cells during mitosis associated with a role in cell cycle control. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):99–103. doi: 10.1073/pnas.90.1.99. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aniento F., Roche E., Cuervo A. M., Knecht E. Uptake and degradation of glyceraldehyde-3-phosphate dehydrogenase by rat liver lysosomes. J Biol Chem. 1993 May 15;268(14):10463–10470. [PubMed] [Google Scholar]
  4. Belich M. P., Glynne R. J., Senger G., Sheer D., Trowsdale J. Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteins. Curr Biol. 1994 Sep 1;4(9):769–776. doi: 10.1016/s0960-9822(00)00174-3. [DOI] [PubMed] [Google Scholar]
  5. Benedict C. M., Ren L., Clawson G. A. Nuclear multicatalytic proteinase alpha subunit RRC3: differential size, tyrosine phosphorylation, and susceptibility to antisense oligonucleotide treatment. Biochemistry. 1995 Jul 25;34(29):9587–9598. doi: 10.1021/bi00029a036. [DOI] [PubMed] [Google Scholar]
  6. Bretz R., Bretz H., Palade G. E. Distribution of terminal glycosyltransferases in hepatic Golgi fractions. J Cell Biol. 1980 Jan;84(1):87–101. doi: 10.1083/jcb.84.1.87. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cuervo A. M., Palmer A., Rivett A. J., Knecht E. Degradation of proteasomes by lysosomes in rat liver. Eur J Biochem. 1995 Feb 1;227(3):792–800. doi: 10.1111/j.1432-1033.1995.tb20203.x. [DOI] [PubMed] [Google Scholar]
  8. DeMars R., Spies T. New genes in the MHC that encode proteins for antigen processing. Trends Cell Biol. 1992 Mar;2(3):81–86. doi: 10.1016/0962-8924(92)90077-z. [DOI] [PubMed] [Google Scholar]
  9. Fehling H. J., Swat W., Laplace C., Kühn R., Rajewsky K., Müller U., von Boehmer H. MHC class I expression in mice lacking the proteasome subunit LMP-7. Science. 1994 Aug 26;265(5176):1234–1237. doi: 10.1126/science.8066463. [DOI] [PubMed] [Google Scholar]
  10. Finger A., Knop M., Wolf D. H. Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem. 1993 Dec 1;218(2):565–574. doi: 10.1111/j.1432-1033.1993.tb18410.x. [DOI] [PubMed] [Google Scholar]
  11. Fleischer S., Kervina M. Subcellular fractionation of rat liver. Methods Enzymol. 1974;31:6–41. doi: 10.1016/0076-6879(74)31005-1. [DOI] [PubMed] [Google Scholar]
  12. Frentzel S., Kuhn-Hartmann I., Gernold M., Gött P., Seelig A., Kloetzel P. M. The major-histocompatibility-complex-encoded beta-type proteasome subunits LMP2 and LMP7. Evidence that LMP2 and LMP7 are synthesized as proproteins and that cellular levels of both mRNA and LMP-containing 20S proteasomes are differentially regulated. Eur J Biochem. 1993 Aug 15;216(1):119–126. doi: 10.1111/j.1432-1033.1993.tb18123.x. [DOI] [PubMed] [Google Scholar]
  13. Früh K., Gossen M., Wang K., Bujard H., Peterson P. A., Yang Y. Displacement of housekeeping proteasome subunits by MHC-encoded LMPs: a newly discovered mechanism for modulating the multicatalytic proteinase complex. EMBO J. 1994 Jul 15;13(14):3236–3244. doi: 10.1002/j.1460-2075.1994.tb06625.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heinemeyer W., Tröndle N., Albrecht G., Wolf D. H. PRE5 and PRE6, the last missing genes encoding 20S proteasome subunits from yeast? Indication for a set of 14 different subunits in the eukaryotic proteasome core. Biochemistry. 1994 Oct 11;33(40):12229–12237. doi: 10.1021/bi00206a028. [DOI] [PubMed] [Google Scholar]
  15. Jensen T. J., Loo M. A., Pind S., Williams D. B., Goldberg A. L., Riordan J. R. Multiple proteolytic systems, including the proteasome, contribute to CFTR processing. Cell. 1995 Oct 6;83(1):129–135. doi: 10.1016/0092-8674(95)90241-4. [DOI] [PubMed] [Google Scholar]
  16. Jentsch S., Schlenker S. Selective protein degradation: a journey's end within the proteasome. Cell. 1995 Sep 22;82(6):881–884. doi: 10.1016/0092-8674(95)90021-7. [DOI] [PubMed] [Google Scholar]
  17. Kanayama H., Tanaka K., Aki M., Kagawa S., Miyaji H., Satoh M., Okada F., Sato S., Shimbara N., Ichihara A. Changes in expressions of proteasome and ubiquitin genes in human renal cancer cells. Cancer Res. 1991 Dec 15;51(24):6677–6685. [PubMed] [Google Scholar]
  18. Kaufmann S. H., Shaper J. H. A subset of non-histone nuclear proteins reversibly stabilized by the sulfhydryl cross-linking reagent tetrathionate. Polypeptides of the internal nuclear matrix. Exp Cell Res. 1984 Dec;155(2):477–495. doi: 10.1016/0014-4827(84)90208-8. [DOI] [PubMed] [Google Scholar]
  19. Kawahara H., Yokosawa H. Cell cycle-dependent change of proteasome distribution during embryonic development of the ascidian Halocynthia roretzi. Dev Biol. 1992 May;151(1):27–33. doi: 10.1016/0012-1606(92)90210-8. [DOI] [PubMed] [Google Scholar]
  20. Klausner R. D., Sitia R. Protein degradation in the endoplasmic reticulum. Cell. 1990 Aug 24;62(4):611–614. doi: 10.1016/0092-8674(90)90104-m. [DOI] [PubMed] [Google Scholar]
  21. Kleijmeer M. J., Kelly A., Geuze H. J., Slot J. W., Townsend A., Trowsdale J. Location of MHC-encoded transporters in the endoplasmic reticulum and cis-Golgi. Nature. 1992 May 28;357(6376):342–344. doi: 10.1038/357342a0. [DOI] [PubMed] [Google Scholar]
  22. Klein U., Gernold M., Kloetzel P. M. Cell-specific accumulation of Drosophila proteasomes (MCP) during early development. J Cell Biol. 1990 Dec;111(6 Pt 1):2275–2282. doi: 10.1083/jcb.111.6.2275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kristensen P., Johnsen A. H., Uerkvitz W., Tanaka K., Hendil K. B. Human proteasome subunits from 2-dimensional gels identified by partial sequencing. Biochem Biophys Res Commun. 1994 Dec 30;205(3):1785–1789. doi: 10.1006/bbrc.1994.2876. [DOI] [PubMed] [Google Scholar]
  24. Lachmann P. J., Strangeways L., Vyakarnam A., Evan G. Raising antibodies by coupling peptides to PPD and immunizing BCG-sensitized animals. Ciba Found Symp. 1986;119:25–57. doi: 10.1002/9780470513286.ch3. [DOI] [PubMed] [Google Scholar]
  25. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  26. Larsen F., Solheim J., Kristensen T., Kolstø A. B., Prydz H. A tight cluster of five unrelated human genes on chromosome 16q22.1. Hum Mol Genet. 1993 Oct;2(10):1589–1595. doi: 10.1093/hmg/2.10.1589. [DOI] [PubMed] [Google Scholar]
  27. Lilley K. S., Davison M. D., Rivett A. J. N-terminal sequence similarities between components of the multicatalytic proteinase complex. FEBS Lett. 1990 Mar 26;262(2):327–329. doi: 10.1016/0014-5793(90)80220-d. [DOI] [PubMed] [Google Scholar]
  28. Mason G. G., Rivett A. J. Proteasomes: the changing face of proteolysis. Chem Biol. 1994 Dec;1(4):197–199. doi: 10.1016/1074-5521(94)90010-8. [DOI] [PubMed] [Google Scholar]
  29. Morimoto T., Matsuura S., Arpin M. Biosynthesis of cytochrome c and its posttranslational transfer into mitochondria. Methods Enzymol. 1983;97:408-26, 621-3. doi: 10.1016/0076-6879(83)97152-5. [DOI] [PubMed] [Google Scholar]
  30. Palmer A., Mason G. G., Paramio J. M., Knecht E., Rivett A. J. Changes in proteasome localization during the cell cycle. Eur J Cell Biol. 1994 Jun;64(1):163–175. [PubMed] [Google Scholar]
  31. Rivett A. J., Knecht E. Protein turnover: proteasome location. Curr Biol. 1993 Feb;3(2):127–129. doi: 10.1016/0960-9822(93)90173-l. [DOI] [PubMed] [Google Scholar]
  32. Rivett A. J., Palmer A., Knecht E. Electron microscopic localization of the multicatalytic proteinase complex in rat liver and in cultured cells. J Histochem Cytochem. 1992 Aug;40(8):1165–1172. doi: 10.1177/40.8.1619280. [DOI] [PubMed] [Google Scholar]
  33. Rivett A. J., Sweeney S. T. Properties of subunits of the multicatalytic proteinase complex revealed by the use of subunit-specific antibodies. Biochem J. 1991 Aug 15;278(Pt 1):171–177. doi: 10.1042/bj2780171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Rubin D. M., Finley D. Proteolysis. The proteasome: a protein-degrading organelle? Curr Biol. 1995 Aug 1;5(8):854–858. doi: 10.1016/s0960-9822(95)00172-2. [DOI] [PubMed] [Google Scholar]
  35. Sibille C., Gould K. G., Willard-Gallo K., Thomson S., Rivett A. J., Powis S., Butcher G. W., De Baetselier P. LMP2+ proteasomes are required for the presentation of specific antigens to cytotoxic T lymphocytes. Curr Biol. 1995 Aug 1;5(8):923–930. doi: 10.1016/s0960-9822(95)00182-5. [DOI] [PubMed] [Google Scholar]
  36. Sommer T., Jentsch S. A protein translocation defect linked to ubiquitin conjugation at the endoplasmic reticulum. Nature. 1993 Sep 9;365(6442):176–179. doi: 10.1038/365176a0. [DOI] [PubMed] [Google Scholar]
  37. Tanaka K., Kumatori A., Ii K., Ichihara A. Direct evidence for nuclear and cytoplasmic colocalization of proteasomes (multiprotease complexes) in liver. J Cell Physiol. 1989 Apr;139(1):34–41. doi: 10.1002/jcp.1041390107. [DOI] [PubMed] [Google Scholar]
  38. Tanaka K., Yoshimura T., Tamura T., Fujiwara T., Kumatori A., Ichihara A. Possible mechanism of nuclear translocation of proteasomes. FEBS Lett. 1990 Oct 1;271(1-2):41–46. doi: 10.1016/0014-5793(90)80367-r. [DOI] [PubMed] [Google Scholar]
  39. Tawfic S., Ahmed K. Association of casein kinase 2 with nuclear matrix. Possible role in nuclear matrix protein phosphorylation. J Biol Chem. 1994 Mar 11;269(10):7489–7493. [PubMed] [Google Scholar]
  40. Townsend A., Trowsdale J. The transporters associated with antigen presentation. Semin Cell Biol. 1993 Feb;4(1):53–61. doi: 10.1006/scel.1993.1007. [DOI] [PubMed] [Google Scholar]
  41. Van Kaer L., Ashton-Rickardt P. G., Eichelberger M., Gaczynska M., Nagashima K., Rock K. L., Goldberg A. L., Doherty P. C., Tonegawa S. Altered peptidase and viral-specific T cell response in LMP2 mutant mice. Immunity. 1994 Oct;1(7):533–541. doi: 10.1016/1074-7613(94)90043-4. [DOI] [PubMed] [Google Scholar]
  42. Ward C. L., Omura S., Kopito R. R. Degradation of CFTR by the ubiquitin-proteasome pathway. Cell. 1995 Oct 6;83(1):121–127. doi: 10.1016/0092-8674(95)90240-6. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES