Abstract
The binding of Ca(2+)- and Ba(2+)-calmodulin to caldesmon and its functional consequence was investigated with three different calmodulin mutants. Two calmodulin mutants have pairs of cysteine residues substituted and oxidized to a disulphide bond in either the N- or C-terminal lobe (C41/75 and C85/112). The third mutant has phenylalanine-92 replaced by alanine (F92A). Binding measurements in the presence of Ca2+ by separation on native gels and by carbodiimide-induced cross-linking showed a lower affinity for caldesmon in all the mutants. When Ca2+ was replaced by Ba2+ the affinity of calmodulin for caldesmon was further reduced. The ability of Ca(2+)-calmodulin to release caldesmon's inhibition of the actin-tropomyosin-activated myosin ATPase was virtually abolished by mutation of phenylalanine-92 to alanine or by replacing Ba2+ for Ca2+ in native calmodulin. Both cysteine mutants retained their functional ability, but the increased concentration needed for 50% release of caldesmon inhibition reflected their decreased affinity. Ca2+ -calmodulin produced a broadening in the signals of the NMR spectrum of the 10 kDa Ca(2+)-calmodulin-binding C-terminal fragment of caldesmon arising from tryptophans -749 and -779 and caused an enhancement of maximum tryptophan fluorescence of 49% and a 16 nm blue shift of the maximum. Ca(2+)-calmodulin F92A produced a change in wavelength of 4 nm but no change in maximum, whereas Ca(2+)-calmodulin C41/75 binding produced a decrease in fluorescence with no shift of the maximum. We conclude that functional binding of Ca(2+)-calmodulin to caldesmon requires multiple interaction sites on both molecules. However, some structural modification in calmodulin does not abolish the caldesmon-related functionality. This suggests that various EF hand proteins can substitute for the calmodulin molecule.
Full Text
The Full Text of this article is available as a PDF (603.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
- Bartegi A., Fattoum A., Derancourt J., Kassab R. Characterization of the carboxyl-terminal 10-kDa cyanogen bromide fragment of caldesmon as an actin-calmodulin-binding region. J Biol Chem. 1990 Sep 5;265(25):15231–15238. [PubMed] [Google Scholar]
- Bartegi A., Fattoum A., Kassab R. Cross-linking of smooth muscle caldesmon to the NH2-terminal region of skeletal F-actin. J Biol Chem. 1990 Feb 5;265(4):2231–2237. [PubMed] [Google Scholar]
- Bryan J., Imai M., Lee R., Moore P., Cook R. G., Lin W. G. Cloning and expression of a smooth muscle caldesmon. J Biol Chem. 1989 Aug 15;264(23):13873–13879. [PubMed] [Google Scholar]
- Chalovich J. M., Bryan J., Benson C. E., Velaz L. Localization and characterization of a 7.3-kDa region of caldesmon which reversibly inhibits actomyosin ATPase activity. J Biol Chem. 1992 Aug 15;267(23):16644–16650. [PMC free article] [PubMed] [Google Scholar]
- Eisenberg E., Kielley W. W. Troponin-tropomyosin complex. Column chromatographic separation and activity of the three, active troponin components with and without tropomyosin present. J Biol Chem. 1974 Aug 10;249(15):4742–4748. [PubMed] [Google Scholar]
- Gao Y., Levine B. A., Mornet D., Slatter D. A., Strasburg G. M. Interaction of calmodulin with phospholamban and caldesmon: comparative studies by 1H-NMR spectroscopy. Biochim Biophys Acta. 1992 Nov 10;1160(1):22–34. doi: 10.1016/0167-4838(92)90035-c. [DOI] [PubMed] [Google Scholar]
- Gopalakrishna R., Anderson W. B. Ca2+-induced hydrophobic site on calmodulin: application for purification of calmodulin by phenyl-Sepharose affinity chromatography. Biochem Biophys Res Commun. 1982 Jan 29;104(2):830–836. doi: 10.1016/0006-291x(82)90712-4. [DOI] [PubMed] [Google Scholar]
- Grabarek Z., Gergely J. Zero-length crosslinking procedure with the use of active esters. Anal Biochem. 1990 Feb 15;185(1):131–135. doi: 10.1016/0003-2697(90)90267-d. [DOI] [PubMed] [Google Scholar]
- Graceffa P., Jancsó A. Secondary structure and thermal stability of caldesmon and its domains. Arch Biochem Biophys. 1993 Nov 15;307(1):21–28. doi: 10.1006/abbi.1993.1554. [DOI] [PubMed] [Google Scholar]
- Higuchi R., Krummel B., Saiki R. K. A general method of in vitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acids Res. 1988 Aug 11;16(15):7351–7367. doi: 10.1093/nar/16.15.7351. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber P. A., Fraser I. D., Marston S. B. Location of smooth-muscle myosin and tropomyosin binding sites in the C-terminal 288 residues of human caldesmon. Biochem J. 1995 Dec 1;312(Pt 2):617–625. doi: 10.1042/bj3120617. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Humphrey M. B., Herrera-Sosa H., Gonzalez G., Lee R., Bryan J. Cloning of cDNAs encoding human caldesmons. Gene. 1992 Mar 15;112(2):197–204. doi: 10.1016/0378-1119(92)90376-z. [DOI] [PubMed] [Google Scholar]
- Ikura M., Clore G. M., Gronenborn A. M., Zhu G., Klee C. B., Bax A. Solution structure of a calmodulin-target peptide complex by multidimensional NMR. Science. 1992 May 1;256(5057):632–638. doi: 10.1126/science.1585175. [DOI] [PubMed] [Google Scholar]
- LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
- Linse S., Helmersson A., Forsén S. Calcium binding to calmodulin and its globular domains. J Biol Chem. 1991 May 5;266(13):8050–8054. [PubMed] [Google Scholar]
- Malencik D. A., Ausio J., Byles C. E., Modrell B., Anderson S. R. Turkey gizzard caldesmon: molecular weight determination and calmodulin binding studies. Biochemistry. 1989 Oct 3;28(20):8227–8233. doi: 10.1021/bi00446a039. [DOI] [PubMed] [Google Scholar]
- Mani R. S., McCubbin W. D., Kay C. M. Calcium-dependent regulation of caldesmon by an 11-kDa smooth muscle calcium-binding protein, caltropin. Biochemistry. 1992 Dec 1;31(47):11896–11901. doi: 10.1021/bi00162a031. [DOI] [PubMed] [Google Scholar]
- Margossian S. S., Lowey S. Preparation of myosin and its subfragments from rabbit skeletal muscle. Methods Enzymol. 1982;85(Pt B):55–71. doi: 10.1016/0076-6879(82)85009-x. [DOI] [PubMed] [Google Scholar]
- Marston S. B., Fraser I. D., Huber P. A., Pritchard K., Gusev N. B., Torok K. Location of two contact sites between human smooth muscle caldesmon and Ca(2+)-calmodulin. J Biol Chem. 1994 Mar 18;269(11):8134–8139. [PubMed] [Google Scholar]
- Marston S. B., Fraser I. D., Huber P. A. Smooth muscle caldesmon controls the strong binding interaction between actin-tropomyosin and myosin. J Biol Chem. 1994 Dec 23;269(51):32104–32109. [PubMed] [Google Scholar]
- Meador W. E., Means A. R., Quiocho F. A. Target enzyme recognition by calmodulin: 2.4 A structure of a calmodulin-peptide complex. Science. 1992 Aug 28;257(5074):1251–1255. doi: 10.1126/science.1519061. [DOI] [PubMed] [Google Scholar]
- Medvedeva M. V., Bushueva T. L., Shirinsky V. P., Lukas T. J., Watterson D. M., Gusev N. B. Interaction of smooth muscle caldesmon with calmodulin mutants. FEBS Lett. 1995 Feb 20;360(1):89–92. doi: 10.1016/0014-5793(95)00058-h. [DOI] [PubMed] [Google Scholar]
- Mezgueldi M., Derancourt J., Calas B., Kassab R., Fattoum A. Precise identification of the regulatory F-actin- and calmodulin-binding sequences in the 10-kDa carboxyl-terminal domain of caldesmon. J Biol Chem. 1994 Apr 29;269(17):12824–12832. [PubMed] [Google Scholar]
- Mornet D., Bonet-Kerrache A., Strasburg G. M., Patchell V. B., Perry S. V., Huber P. A., Marston S. B., Slatter D. A., Evans J. S., Levine B. A. The binding of distinct segments of actin to multiple sites in the C-terminus of caldesmon: comparative aspects of actin interaction with troponin-I and caldesmon. Biochemistry. 1995 Feb 14;34(6):1893–1901. doi: 10.1021/bi00006a010. [DOI] [PubMed] [Google Scholar]
- O'Neil K. T., DeGrado W. F. How calmodulin binds its targets: sequence independent recognition of amphiphilic alpha-helices. Trends Biochem Sci. 1990 Feb;15(2):59–64. doi: 10.1016/0968-0004(90)90177-d. [DOI] [PubMed] [Google Scholar]
- Olah G. A., Trewhella J. A model structure of the muscle protein complex 4Ca2+.troponin C.troponin I derived from small-angle scattering data: implications for regulation. Biochemistry. 1994 Nov 1;33(43):12800–12806. doi: 10.1021/bi00209a011. [DOI] [PubMed] [Google Scholar]
- Pritchard K., Marston S. B. Ca2+-calmodulin binding to caldesmon and the caldesmon-actin-tropomyosin complex. Its role in Ca2+ regulation of the activity of synthetic smooth-muscle thin filaments. Biochem J. 1989 Feb 1;257(3):839–843. doi: 10.1042/bj2570839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Redwood C. S., Marston S. B. Binding and regulatory properties of expressed functional domains of chicken gizzard smooth muscle caldesmon. J Biol Chem. 1993 May 25;268(15):10969–10976. [PubMed] [Google Scholar]
- Shirinsky V. P., Bushueva T. L., Frolova S. I. Caldesmon-calmodulin interaction. Study by the method of protein intrinsic tryptophan fluorescence. Biochem J. 1988 Oct 1;255(1):203–208. [PMC free article] [PubMed] [Google Scholar]
- Skripnikova E. V., Gusev N. B. Interaction of smooth muscle caldesmon with S-100 protein. FEBS Lett. 1989 Nov 6;257(2):380–382. doi: 10.1016/0014-5793(89)81577-7. [DOI] [PubMed] [Google Scholar]
- Smith C. W., Pritchard K., Marston S. B. The mechanism of Ca2+ regulation of vascular smooth muscle thin filaments by caldesmon and calmodulin. J Biol Chem. 1987 Jan 5;262(1):116–122. [PubMed] [Google Scholar]
- Taggart M. J., Marston S. B. The effects of vascular smooth muscle caldesmon on force production by 'desensitised' skeletal muscle fibres. FEBS Lett. 1988 Dec 19;242(1):171–174. doi: 10.1016/0014-5793(88)81009-3. [DOI] [PubMed] [Google Scholar]
- Tan R. Y., Mabuchi Y., Grabarek Z. Blocking the Ca2+-induced conformational transitions in calmodulin with disulfide bonds. J Biol Chem. 1996 Mar 29;271(13):7479–7483. doi: 10.1074/jbc.271.13.7479. [DOI] [PubMed] [Google Scholar]
- Wawrzynczak E. J., Perham R. N. Isolation and nucleotide sequence of a cDNA encoding human calmodulin. Biochem Int. 1984 Aug;9(2):177–185. [PubMed] [Google Scholar]
- Weinstein H., Mehler E. L. Ca(2+)-binding and structural dynamics in the functions of calmodulin. Annu Rev Physiol. 1994;56:213–236. doi: 10.1146/annurev.ph.56.030194.001241. [DOI] [PubMed] [Google Scholar]
- Zhan Q. Q., Wong S. S., Wang C. L. A calmodulin-binding peptide of caldesmon. J Biol Chem. 1991 Nov 15;266(32):21810–21814. [PubMed] [Google Scholar]
- Zhang M., Vogel H. J. The calmodulin-binding domain of caldesmon binds to calmodulin in an alpha-helical conformation. Biochemistry. 1994 Feb 8;33(5):1163–1171. doi: 10.1021/bi00171a016. [DOI] [PubMed] [Google Scholar]
- Zhuang S., Wang E., Wang C. L. Identification of the functionally relevant calmodulin binding site in smooth muscle caldesmon. J Biol Chem. 1995 Aug 25;270(34):19964–19968. doi: 10.1074/jbc.270.34.19964. [DOI] [PubMed] [Google Scholar]