Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 1;316(Pt 2):481–486. doi: 10.1042/bj3160481

Regulation of a high-affinity diamine transport system in Trypanosoma cruzi epimastigotes.

S A Le Quesne 1, A H Fairlamb 1
PMCID: PMC1217375  PMID: 8687391

Abstract

Trypanosoma cruzi epimastigotes take up exogenous [3H]putrescine and [3H]cadaverine by a rapid, high-affinity, transport system that exhibits saturable kinetics (putrescine K(m) 2.0 microM, V(max) 3.3 nmol/min per 10(8) cells; cadaverine K(m) 13.4 microM, V(max) 3.9 nmol/min per 10(8) cells). Putrescine transport is temperature dependent and requires the presence of a membrane potential and thiol groups for activity. Its activity is altered in response to extracellular putrescine levels and as the cells proceed through the growth cycle. This transporter shows high specificity for the diamines putrescine and cadaverine, but low specificity for the polyamines spermidine and spermine. The existence of rapid diamine/polyamine transport systems whose activity can be adjusted in response to the growth conditions is of particular importance, as they seem unable to synthesize their own putrescine [Hunter, Le Quesne and Fairlamb (1994) Eur. J. Biochem. 226, 1019-1027].

Full Text

The Full Text of this article is available as a PDF (674.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bachrach U. Physiological aspects of ornithine decarboxylase. Cell Biochem Funct. 1984 Jan;2(1):6–10. doi: 10.1002/cbf.290020103. [DOI] [PubMed] [Google Scholar]
  2. Byers T. L., Pegg A. E. Regulation of polyamine transport in Chinese hamster ovary cells. J Cell Physiol. 1990 Jun;143(3):460–467. doi: 10.1002/jcp.1041430309. [DOI] [PubMed] [Google Scholar]
  3. Carter N. S., Fairlamb A. H. Arsenical-resistant trypanosomes lack an unusual adenosine transporter. Nature. 1993 Jan 14;361(6408):173–176. doi: 10.1038/361173a0. [DOI] [PubMed] [Google Scholar]
  4. Damper D., Patton C. L. Pentamidine transport and sensitivity in brucei-group trypanosomes. J Protozool. 1976 May;23(2):349–356. doi: 10.1111/j.1550-7408.1976.tb03787.x. [DOI] [PubMed] [Google Scholar]
  5. Damper D., Patton C. L. Pentamidine transport in Trypanosoma brucei-kinetics and specificity. Biochem Pharmacol. 1976 Feb 1;25(3):271–276. doi: 10.1016/0006-2952(76)90213-6. [DOI] [PubMed] [Google Scholar]
  6. Fairlamb A. H., Carter N. S., Cunningham M., Smith K. Characterisation of melarsen-resistant Trypanosoma brucei brucei with respect to cross-resistance to other drugs and trypanothione metabolism. Mol Biochem Parasitol. 1992 Jul;53(1-2):213–222. doi: 10.1016/0166-6851(92)90023-d. [DOI] [PubMed] [Google Scholar]
  7. Fairlamb A. H., Cerami A. Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol. 1992;46:695–729. doi: 10.1146/annurev.mi.46.100192.003403. [DOI] [PubMed] [Google Scholar]
  8. Fairlamb A. H., Henderson G. B., Cerami A. The biosynthesis of trypanothione and N1-glutathionylspermidine in Crithidia fasciculata. Mol Biochem Parasitol. 1986 Dec;21(3):247–257. doi: 10.1016/0166-6851(86)90130-1. [DOI] [PubMed] [Google Scholar]
  9. Ghoda L., Sidney D., Macrae M., Coffino P. Structural elements of ornithine decarboxylase required for intracellular degradation and polyamine-dependent regulation. Mol Cell Biol. 1992 May;12(5):2178–2185. doi: 10.1128/mcb.12.5.2178. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. González N. S., Ceriani C., Algranati I. D. Differential regulation of putrescine uptake in Trypanosoma cruzi and other trypanosomatids. Biochem Biophys Res Commun. 1992 Oct 15;188(1):120–128. doi: 10.1016/0006-291x(92)92358-5. [DOI] [PubMed] [Google Scholar]
  11. HEYTLER P. G. uncoupling of oxidative phosphorylation by carbonyl cyanide phenylhydrazones. I. Some characteristics of m-Cl-CCP action on mitochondria and chloroplasts. Biochemistry. 1963 Mar-Apr;2:357–361. doi: 10.1021/bi00902a031. [DOI] [PubMed] [Google Scholar]
  12. Hanson W. L., Bradford M. M., Chapman W. L., Jr, Waits V. B., McCann P. P., Sjoerdsma A. alpha-Difluoromethylornithine: a promising lead for preventive chemotherapy for coccidiosis. Am J Vet Res. 1982 Sep;43(9):1651–1653. [PubMed] [Google Scholar]
  13. Hayashi S., Murakami Y. Rapid and regulated degradation of ornithine decarboxylase. Biochem J. 1995 Feb 15;306(Pt 1):1–10. doi: 10.1042/bj3060001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Heby O., Persson L. Molecular genetics of polyamine synthesis in eukaryotic cells. Trends Biochem Sci. 1990 Apr;15(4):153–158. doi: 10.1016/0968-0004(90)90216-x. [DOI] [PubMed] [Google Scholar]
  15. Heby O. Role of polyamines in the control of cell proliferation and differentiation. Differentiation. 1981;19(1):1–20. doi: 10.1111/j.1432-0436.1981.tb01123.x. [DOI] [PubMed] [Google Scholar]
  16. Hua S. B., Li X., Coffino P., Wang C. C. Rat antizyme inhibits the activity but does not promote the degradation of mouse ornithine decarboxylase in Trypanosoma brucei. J Biol Chem. 1995 Apr 28;270(17):10264–10271. doi: 10.1074/jbc.270.17.10264. [DOI] [PubMed] [Google Scholar]
  17. Hunter K. J., Le Quesne S. A., Fairlamb A. H. Identification and biosynthesis of N1,N9-bis(glutathionyl)aminopropylcadaverine (homotrypanothione) in Trypanosoma cruzi. Eur J Biochem. 1994 Dec 15;226(3):1019–1027. doi: 10.1111/j.1432-1033.1994.t01-1-01019.x. [DOI] [PubMed] [Google Scholar]
  18. Kallio A., McCann P. P., Bey P. DL-alpha-(Difluoromethyl)arginine: a potent enzyme-activated irreversible inhibitor of bacterial decarboxylases. Biochemistry. 1981 May 26;20(11):3163–3168. doi: 10.1021/bi00514a027. [DOI] [PubMed] [Google Scholar]
  19. Kashiwagi K., Miyamoto S., Nukui E., Kobayashi H., Igarashi K. Functions of potA and potD proteins in spermidine-preferential uptake system in Escherichia coli. J Biol Chem. 1993 Sep 15;268(26):19358–19363. [PubMed] [Google Scholar]
  20. Kierszenbaum F., Wirth J. J., McCann P. P., Sjoerdsma A. Arginine decarboxylase inhibitors reduce the capacity of Trypanosoma cruzi to infect and multiply in mammalian host cells. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4278–4282. doi: 10.1073/pnas.84.12.4278. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Lessard M., Zhao C., Singh S. M., Poulin R. Hormonal and feedback regulation of putrescine and spermidine transport in human breast cancer cells. J Biol Chem. 1995 Jan 27;270(4):1685–1694. [PubMed] [Google Scholar]
  22. Majumder S., Wirth J. J., Bitonti A. J., McCann P. P., Kierszenbaum F. Biochemical evidence for the presence of arginine decarboxylase activity in Trypanosoma cruzi. J Parasitol. 1992 Apr;78(2):371–374. [PubMed] [Google Scholar]
  23. McCann P. P., Pegg A. E. Ornithine decarboxylase as an enzyme target for therapy. Pharmacol Ther. 1992;54(2):195–215. doi: 10.1016/0163-7258(92)90032-u. [DOI] [PubMed] [Google Scholar]
  24. Pegg A. E. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem J. 1986 Mar 1;234(2):249–262. doi: 10.1042/bj2340249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Phillips M. A., Wang C. C. A Trypanosoma brucei mutant resistant to alpha-difluoromethylornithine. Mol Biochem Parasitol. 1987 Jan 2;22(1):9–17. doi: 10.1016/0166-6851(87)90064-8. [DOI] [PubMed] [Google Scholar]
  26. Seiler N., Dezeure F. Polyamine transport in mammalian cells. Int J Biochem. 1990;22(3):211–218. doi: 10.1016/0020-711x(90)90332-w. [DOI] [PubMed] [Google Scholar]
  27. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  28. Westall F., Hesser H. Fifteen-minute acid hydrolysis of peptides. Anal Biochem. 1974 Oct;61(2):610–613. doi: 10.1016/0003-2697(74)90426-6. [DOI] [PubMed] [Google Scholar]
  29. Zilberstein D. Transport of nutrients and ions across membranes of trypanosomatid parasites. Adv Parasitol. 1993;32:261–291. doi: 10.1016/s0065-308x(08)60209-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES