Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 1;316(Pt 2):507–513. doi: 10.1042/bj3160507

Modulation of flavocytochrome b2 intraprotein electron transfer via an interdomain hinge region.

R E Sharp 1, S K Chapman 1, G A Reid 1
PMCID: PMC1217378  PMID: 8687394

Abstract

The two domains of flavocytochrome b2 are connected by a typical hinge peptide. To probe the role of the hinge in modulating the efficiency of intraprotein electron transfer between these two domains, a number of mutant enzymes with truncated hinge regions were previously constructed and characterized [Sharp, Chapman and Reid (1996) Biochemistry 35, 891-899]. In the present study two mutant enzymes with elongated hinge regions have been constructed (HI3 and HI6) to further our understanding of the controlling influence of hinge length and primary structure on intraprotein electron transfer. Modification of the hinge had little effect on the lactate dehydrogenase activity of the enzyme, as was evident from steady-state experiments using ferricyanide as electron acceptor and from pre-steady-state experiments monitoring flavin reduction. However, the hinge insertions lowered the enzyme's effectiveness as a cytochrome c reductase. This effect results from a defect at the first interdomain electron-transfer step (FMNH2 --> haem electron transfer), where the rate constants for haem reduction in HI3 and HI6 were 50- and 100-fold lower than the corresponding value for the wild-type enzyme. Preservation of structural integrity within the hinge region is apparently essential for efficient intraprotein electron transfer.

Full Text

The Full Text of this article is available as a PDF (469.7 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. APPLEBY C. A., MORTON R. K. Crystalline cytochrome b2 and lactic dehydrogenase of yeast. Nature. 1954 Apr 24;173(4408):749–752. doi: 10.1038/173749a0. [DOI] [PubMed] [Google Scholar]
  2. Balme A., Brunt C. E., Pallister R. L., Chapman S. K., Reid G. A. Isolation and characterization of the flavin-binding domain of flavocytochrome b2 expressed independently in Escherichia coli. Biochem J. 1995 Jul 15;309(Pt 2):601–605. doi: 10.1042/bj3090601. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black M. T., White S. A., Reid G. A., Chapman S. K. High-level expression of fully active yeast flavocytochrome b2 in Escherichia coli. Biochem J. 1989 Feb 15;258(1):255–259. doi: 10.1042/bj2580255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Capeillère-Blandin C., Bray R. C., Iwatsubo M., Labeyrie F. Flavocytochrome b2: kinetic studies by absorbance and electron-paramagnetic-resonance spectroscopy of electron distribution among prosthetic groups. Eur J Biochem. 1975 Jun;54(2):549–566. doi: 10.1111/j.1432-1033.1975.tb04168.x. [DOI] [PubMed] [Google Scholar]
  5. Chapman S. K., Reid G. A., Daff S., Sharp R. E., White P., Manson F. D., Lederer F. Flavin to haem electron transfer in flavocytochrome b2. Biochem Soc Trans. 1994 Aug;22(3):713–718. doi: 10.1042/bst0220713. [DOI] [PubMed] [Google Scholar]
  6. Daum G., Böhni P. C., Schatz G. Import of proteins into mitochondria. Cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J Biol Chem. 1982 Nov 10;257(21):13028–13033. [PubMed] [Google Scholar]
  7. Dutton P. L. Redox potentiometry: determination of midpoint potentials of oxidation-reduction components of biological electron-transfer systems. Methods Enzymol. 1978;54:411–435. doi: 10.1016/s0076-6879(78)54026-3. [DOI] [PubMed] [Google Scholar]
  8. Hazzard J. T., McDonough C. A., Tollin G. Intramolecular electron transfer in yeast flavocytochrome b2 upon one-electron photooxidation of the fully reduced enzyme: evidence for redox state control of heme-flavin communication. Biochemistry. 1994 Nov 15;33(45):13445–13454. doi: 10.1021/bi00249a033. [DOI] [PubMed] [Google Scholar]
  9. Jacq C., Lederer F. Cytochrome b2 from bakers' yeast (L-lactate dehydrogenase). A double-headed enzyme. Eur J Biochem. 1974 Jan 16;41(2):311–320. doi: 10.1111/j.1432-1033.1974.tb03271.x. [DOI] [PubMed] [Google Scholar]
  10. Kunkel T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc Natl Acad Sci U S A. 1985 Jan;82(2):488–492. doi: 10.1073/pnas.82.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Labeyrie F., Beloeil J. C., Thomas M. A. Evidence by NMR for mobility of the cytochrome domain within flavocytochrome b2. Biochim Biophys Acta. 1988 Mar 23;953(2):134–141. doi: 10.1016/0167-4838(88)90018-0. [DOI] [PubMed] [Google Scholar]
  12. Miles C. S., Rouvière-Fourmy N., Lederer F., Mathews F. S., Reid G. A., Black M. T., Chapman S. K. Tyr-143 facilitates interdomain electron transfer in flavocytochrome b2. Biochem J. 1992 Jul 1;285(Pt 1):187–192. doi: 10.1042/bj2850187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ogura Y., Nakamura T. Kinetic studies on the oxidation and reduction of the protoheme moiety of yeast L(+)-lactate dehydrogenases. J Biochem. 1966 Jul;60(1):77–86. doi: 10.1093/oxfordjournals.jbchem.a128402. [DOI] [PubMed] [Google Scholar]
  14. Pajot P., Groudinsky O. Molecular weight and quaternary structure of yeast L-lactate dehydrogenase (cytochrome b2). 2. Revised heme extinction coefficients and minimal molecular weight. Eur J Biochem. 1970 Jan;12(1):158–164. doi: 10.1111/j.1432-1033.1970.tb00833.x. [DOI] [PubMed] [Google Scholar]
  15. Pompon D. Flavocytochrome b2 from baker's yeast. Computer-simulation studies of a new scheme for intramolecular electron transfer. Eur J Biochem. 1980 May;106(1):151–159. [PubMed] [Google Scholar]
  16. Pompon D., Iwatsubo M., Lederer F. Flavocytochrome b2 (Baker's yeast). Deuterium isotope effect studied by rapid-kinetic methods as a probe for the mechanism of electron transfer. Eur J Biochem. 1980 Mar;104(2):479–488. doi: 10.1111/j.1432-1033.1980.tb04450.x. [DOI] [PubMed] [Google Scholar]
  17. Sharp R. E., Chapman S. K., Reid G. A. Deletions in the interdomain hinge region of flavocytochrome b2: effects on intraprotein electron transfer. Biochemistry. 1996 Jan 23;35(3):891–899. doi: 10.1021/bi950457z. [DOI] [PubMed] [Google Scholar]
  18. Sharp R. E., White P., Chapman S. K., Reid G. A. Role of the interdomain hinge of flavocytochrome b2 in intra- and inter-protein electron transfer. Biochemistry. 1994 May 3;33(17):5115–5120. doi: 10.1021/bi00183a015. [DOI] [PubMed] [Google Scholar]
  19. Walker M. C., Tollin G. Laser flash photolysis studies of the kinetics of electron-transfer reactions of Saccharomyces flavocytochrome b2: evidence for conformational gating of intramolecular electron transfer induced by pyruvate binding. Biochemistry. 1991 Jun 4;30(22):5546–5555. doi: 10.1021/bi00236a030. [DOI] [PubMed] [Google Scholar]
  20. White P., Manson F. D., Brunt C. E., Chapman S. K., Reid G. A. The importance of the interdomain hinge in intramolecular electron transfer in flavocytochrome b2. Biochem J. 1993 Apr 1;291(Pt 1):89–94. doi: 10.1042/bj2910089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES