Abstract
A synthetic peptide with the sequence of the first 20 residues of melittin and terminating with an additional cysteine amide was found to have cytolytic activity similar to that of melittin. It was apparent from MS data that the cysteine-terminating peptides had formed disulphide dimers. A peptide in which the thiol was blocked by iodoacetate showed no activity, whereas the same peptide blocked by acetamidomethyl showed activity marginally less haemolytic than that of melittin. Cytolytic activity of melittin analogues comprising the full 26 residues could be obtained with wide sequence permutations providing that a general amphipathic helical structure was preserved. In contrast, the activity of the dimers was dependent not only on retention of an amphipathic helix but also on certain individual residues and a free positive charge. A free N-terminus was essential for haemolytic activity. In addition, a lysine or arginine residue at position 7 and a proline at position 14 were found to be necessary for activity, although it was apparent that additional residues are important for retention of the full lytic potential.
Full Text
The Full Text of this article is available as a PDF (376.2 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Ash P. S., Bunce A. S., Dawson C. R., Hider R. C. The effect of synthetic polymers on the electrical and permeability properties of lipid membranes. Biochim Biophys Acta. 1978 Jul 4;510(2):216–229. doi: 10.1016/0005-2736(78)90022-6. [DOI] [PubMed] [Google Scholar]
- Blondelle S. E., Houghten R. A. Hemolytic and antimicrobial activities of the twenty-four individual omission analogues of melittin. Biochemistry. 1991 May 14;30(19):4671–4678. doi: 10.1021/bi00233a006. [DOI] [PubMed] [Google Scholar]
- Blondelle S. E., Houghten R. A. Probing the relationships between the structure and hemolytic activity of melittin with a complete set of leucine substitution analogs. Pept Res. 1991 Jan-Feb;4(1):12–18. [PubMed] [Google Scholar]
- Blondelle S. E., Simpkins L. R., Pérez-Payá E., Houghten R. A. Influence of tryptophan residues on melittin's hemolytic activity. Biochim Biophys Acta. 1993 Oct 6;1202(2):331–336. doi: 10.1016/0167-4838(93)90024-l. [DOI] [PubMed] [Google Scholar]
- Cohen L. B., Salzberg B. M. Optical measurement of membrane potential. Rev Physiol Biochem Pharmacol. 1978;83:35–88. doi: 10.1007/3-540-08907-1_2. [DOI] [PubMed] [Google Scholar]
- DeGrado W. F., Musso G. F., Lieber M., Kaiser E. T., Kézdy F. J. Kinetics and mechanism of hemolysis induced by melittin and by a synthetic melittin analogue. Biophys J. 1982 Jan;37(1):329–338. doi: 10.1016/S0006-3495(82)84681-X. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Georghiou S., Thompson M., Mukhopadhyay A. K. Melittin-phospholipid interaction studied by employing the single tryptophan residue as an intrinsic fluorescent probe. Biochim Biophys Acta. 1982 Jun 14;688(2):441–452. doi: 10.1016/0005-2736(82)90355-8. [DOI] [PubMed] [Google Scholar]
- Gevod V. S., Birdi K. S. Melittin and the 8-26 fragment. Differences in ionophoric properties as measured by monolayer method. Biophys J. 1984 Jun;45(6):1079–1083. doi: 10.1016/S0006-3495(84)84255-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Habermann E. Bee and wasp venoms. Science. 1972 Jul 28;177(4046):314–322. doi: 10.1126/science.177.4046.314. [DOI] [PubMed] [Google Scholar]
- Habermann E., Jentsch J. Sequenzanalyse des Melittins aus den tryptischen und peptischen Spaltstücken. Hoppe Seylers Z Physiol Chem. 1967 Jan;348(1):37–50. [PubMed] [Google Scholar]
- Habermann E., Kowallek H. Modifikationen der Aminogruppen und des Tryptophans im Melittin als Mittel zur Erkennung von Struktur-Wirkungs-Beziehungen. Hoppe Seylers Z Physiol Chem. 1970 Jul;351(7):884–890. [PubMed] [Google Scholar]
- Hider R. C., Khader F., Tatham A. S. Lytic activity of monomeric and oligomeric melittin. Biochim Biophys Acta. 1983 Feb;728(2):206–214. doi: 10.1016/0005-2736(83)90473-x. [DOI] [PubMed] [Google Scholar]
- Kini R. M., Evans H. J. A common cytolytic region in myotoxins, hemolysins, cardiotoxins and antibacterial peptides. Int J Pept Protein Res. 1989 Oct;34(4):277–286. doi: 10.1111/j.1399-3011.1989.tb01575.x. [DOI] [PubMed] [Google Scholar]
- Knöppel E., Eisenberg D., Wickner W. Interactions of melittin, a preprotein model, with detergents. Biochemistry. 1979 Sep 18;18(19):4177–4181. doi: 10.1021/bi00586a021. [DOI] [PubMed] [Google Scholar]
- Portlock S. H., Clague M. J., Cherry R. J. Leakage of internal markers from erythrocytes and lipid vesicles induced by melittin, gramicidin S and alamethicin: a comparative study. Biochim Biophys Acta. 1990 Nov 30;1030(1):1–10. doi: 10.1016/0005-2736(90)90231-c. [DOI] [PubMed] [Google Scholar]
- Schröder E., Lübke K., Lehmann M., Beetz I. Haemolytic activity and action on the surface tension of aqueous solutions of synthetic melittins and their derivatives. Experientia. 1971 Jul;27(7):764–765. doi: 10.1007/BF02136851. [DOI] [PubMed] [Google Scholar]
- Tosteson M. T., Tosteson D. C. The sting. Melittin forms channels in lipid bilayers. Biophys J. 1981 Oct;36(1):109–116. doi: 10.1016/S0006-3495(81)84719-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Werkmeister J. A., Kirkpatrick A., McKenzie J. A., Rivett D. E. The effect of sequence variations and structure on the cytolytic activity of melittin peptides. Biochim Biophys Acta. 1993 May 7;1157(1):50–54. doi: 10.1016/0304-4165(93)90077-l. [DOI] [PubMed] [Google Scholar]
- Weston K. M., Alsalami M., Raison R. L. Cell membrane changes induced by the cytolytic peptide, melittin, are detectable by 90 degrees laser scatter. Cytometry. 1994 Feb 1;15(2):141–147. doi: 10.1002/cyto.990150207. [DOI] [PubMed] [Google Scholar]
- de Bony J., Dufourcq J., Clin B. Lipid-protein interactions: NMR study of melittin and its binding to lysophosphatidylcholine. Biochim Biophys Acta. 1979 Apr 19;552(3):531–534. doi: 10.1016/0005-2736(79)90197-4. [DOI] [PubMed] [Google Scholar]