Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 1;316(Pt 2):583–591. doi: 10.1042/bj3160583

Phospholipase C in mouse oocytes: characterization of beta and gamma isoforms and their possible involvement in sperm-induced Ca2+ spiking.

G Dupont 1, O M McGuinness 1, M H Johnson 1, M J Berridge 1, F Borgese 1
PMCID: PMC1217388  PMID: 8687404

Abstract

This study involved an investigation of the role of phospholipase C (PLC) in generating repetitive Ca2+ spikes at fertilization. Using a PCR-based strategy we have demonstrated that mouse oocytes have mRNA coding for PLC beta 1, PLC beta 3 and PLC gamma isoenzymes. Furthermore, immunodetection of PLC gamma 1 using monoclonal antibodies reveals that PLC gamma 1 protein is present in mature mouse oocytes, ruling out the possibility that mRNA was being transcribed but not expressed. We were unsuccessful at detecting the presence of PLC beta protein, but the presence of this isoform can be inferred from functional studies. The PLC inhibitor, U73122, exerted an inhibitory effect on oocytes activated by spermatozoa or acetylcholine at concentrations of 10 and 30 microM respectively, while its inactive analogue had no effect. The soluble tyrosine kinase inhibitors, genistein (100 microM), herbimycin (10 microM) and geldanamycin (0.6 microM) which could affect signalling through PLC gamma hindered but never completely inhibited Ca2+ spiking in response to fertilization. We conclude that the activation of PLC to generate InsP3 may play a critical role in fertilization.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abassi Y. A., Foltz K. R. Tyrosine phosphorylation of the egg receptor for sperm at fertilization. Dev Biol. 1994 Aug;164(2):430–443. doi: 10.1006/dbio.1994.1213. [DOI] [PubMed] [Google Scholar]
  2. Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem. 1987 Apr 25;262(12):5592–5595. [PubMed] [Google Scholar]
  3. Almeida E. A., Huovila A. P., Sutherland A. E., Stephens L. E., Calarco P. G., Shaw L. M., Mercurio A. M., Sonnenberg A., Primakoff P., Myles D. G. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell. 1995 Jun 30;81(7):1095–1104. doi: 10.1016/s0092-8674(05)80014-5. [DOI] [PubMed] [Google Scholar]
  4. Blobel C. P., Wolfsberg T. G., Turck C. W., Myles D. G., Primakoff P., White J. M. A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature. 1992 Mar 19;356(6366):248–252. doi: 10.1038/356248a0. [DOI] [PubMed] [Google Scholar]
  5. Bootman M. D., Taylor C. W., Berridge M. J. The thiol reagent, thimerosal, evokes Ca2+ spikes in HeLa cells by sensitizing the inositol 1,4,5-trisphosphate receptor. J Biol Chem. 1992 Dec 15;267(35):25113–25119. [PubMed] [Google Scholar]
  6. Burgess W. H., Dionne C. A., Kaplow J., Mudd R., Friesel R., Zilberstein A., Schlessinger J., Jaye M. Characterization and cDNA cloning of phospholipase C-gamma, a major substrate for heparin-binding growth factor 1 (acidic fibroblast growth factor)-activated tyrosine kinase. Mol Cell Biol. 1990 Sep;10(9):4770–4777. doi: 10.1128/mcb.10.9.4770. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Camps M., Carozzi A., Schnabel P., Scheer A., Parker P. J., Gierschik P. Isozyme-selective stimulation of phospholipase C-beta 2 by G protein beta gamma-subunits. Nature. 1992 Dec 17;360(6405):684–686. doi: 10.1038/360684a0. [DOI] [PubMed] [Google Scholar]
  8. Cheek T. R., McGuinness O. M., Vincent C., Moreton R. B., Berridge M. J., Johnson M. H. Fertilisation and thimerosal stimulate similar calcium spiking patterns in mouse oocytes but by separate mechanisms. Development. 1993 Sep;119(1):179–189. doi: 10.1242/dev.119.1.179. [DOI] [PubMed] [Google Scholar]
  9. Ciapa B., Epel D. A rapid change in phosphorylation on tyrosine accompanies fertilization of sea urchin eggs. FEBS Lett. 1991 Dec 16;295(1-3):167–170. doi: 10.1016/0014-5793(91)81410-a. [DOI] [PubMed] [Google Scholar]
  10. Clapham D. E., Neer E. J. New roles for G-protein beta gamma-dimers in transmembrane signalling. Nature. 1993 Sep 30;365(6445):403–406. doi: 10.1038/365403a0. [DOI] [PubMed] [Google Scholar]
  11. Cuthbertson K. S., Whittingham D. G., Cobbold P. H. Free Ca2+ increases in exponential phases during mouse oocyte activation. Nature. 1981 Dec 24;294(5843):754–757. doi: 10.1038/294754a0. [DOI] [PubMed] [Google Scholar]
  12. Dale B., DeFelice L. J., Ehrenstein G. Injection of a soluble sperm fraction into sea-urchin eggs triggers the cortical reaction. Experientia. 1985 Aug 15;41(8):1068–1070. doi: 10.1007/BF01952148. [DOI] [PubMed] [Google Scholar]
  13. Fissore R. A., Dobrinsky J. R., Balise J. J., Duby R. T., Robl J. M. Patterns of intracellular Ca2+ concentrations in fertilized bovine eggs. Biol Reprod. 1992 Dec;47(6):960–969. doi: 10.1095/biolreprod47.6.960. [DOI] [PubMed] [Google Scholar]
  14. Foltz K. R., Partin J. S., Lennarz W. J. Sea urchin egg receptor for sperm: sequence similarity of binding domain and hsp70. Science. 1993 Mar 5;259(5100):1421–1425. doi: 10.1126/science.8383878. [DOI] [PubMed] [Google Scholar]
  15. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  16. Igusa Y., Miyazaki S. Effects of altered extracellular and intracellular calcium concentration on hyperpolarizing responses of the hamster egg. J Physiol. 1983 Jul;340:611–632. doi: 10.1113/jphysiol.1983.sp014783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Igusa Y., Miyazaki S. Periodic increase of cytoplasmic free calcium in fertilized hamster eggs measured with calcium-sensitive electrodes. J Physiol. 1986 Aug;377:193–205. doi: 10.1113/jphysiol.1986.sp016181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Irving B. A., Chan A. C., Weiss A. Functional characterization of a signal transducing motif present in the T cell antigen receptor zeta chain. J Exp Med. 1993 Apr 1;177(4):1093–1103. doi: 10.1084/jem.177.4.1093. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Jaconi M. E., Theler J. M., Schlegel W., Appel R. D., Wright S. D., Lew P. D. Multiple elevations of cytosolic-free Ca2+ in human neutrophils: initiation by adherence receptors of the integrin family. J Cell Biol. 1991 Mar;112(6):1249–1257. doi: 10.1083/jcb.112.6.1249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Jaffe L. A. First messengers at fertilization. J Reprod Fertil Suppl. 1990;42:107–116. [PubMed] [Google Scholar]
  21. Jaffe L. F. Sources of calcium in egg activation: a review and hypothesis. Dev Biol. 1983 Oct;99(2):265–276. doi: 10.1016/0012-1606(83)90276-2. [DOI] [PubMed] [Google Scholar]
  22. Jhon D. Y., Lee H. H., Park D., Lee C. W., Lee K. H., Yoo O. J., Rhee S. G. Cloning, sequencing, purification, and Gq-dependent activation of phospholipase C-beta 3. J Biol Chem. 1993 Mar 25;268(9):6654–6661. [PubMed] [Google Scholar]
  23. Jin W., Lee N. M., Loh H. H., Thayer S. A. Opioids mobilize calcium from inositol 1,4,5-trisphosphate-sensitive stores in NG108-15 cells. J Neurosci. 1994 Apr;14(4):1920–1929. doi: 10.1523/JNEUROSCI.14-04-01920.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Jin W., Lo T. M., Loh H. H., Thayer S. A. U73122 inhibits phospholipase C-dependent calcium mobilization in neuronal cells. Brain Res. 1994 Apr 11;642(1-2):237–243. doi: 10.1016/0006-8993(94)90927-x. [DOI] [PubMed] [Google Scholar]
  25. Kim H. K., Kim J. W., Zilberstein A., Margolis B., Kim J. G., Schlessinger J., Rhee S. G. PDGF stimulation of inositol phospholipid hydrolysis requires PLC-gamma 1 phosphorylation on tyrosine residues 783 and 1254. Cell. 1991 May 3;65(3):435–441. doi: 10.1016/0092-8674(91)90461-7. [DOI] [PubMed] [Google Scholar]
  26. Kline D., Kline J. T. Repetitive calcium transients and the role of calcium in exocytosis and cell cycle activation in the mouse egg. Dev Biol. 1992 Jan;149(1):80–89. doi: 10.1016/0012-1606(92)90265-i. [DOI] [PubMed] [Google Scholar]
  27. Koch C. A., Anderson D., Moran M. F., Ellis C., Pawson T. SH2 and SH3 domains: elements that control interactions of cytoplasmic signaling proteins. Science. 1991 May 3;252(5006):668–674. doi: 10.1126/science.1708916. [DOI] [PubMed] [Google Scholar]
  28. Kolanus W., Romeo C., Seed B. Lineage-independent activation of immune system effector function by myeloid Fc receptors. EMBO J. 1992 Dec;11(13):4861–4868. doi: 10.1002/j.1460-2075.1992.tb05592.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kornberg L. J., Earp H. S., Turner C. E., Prockop C., Juliano R. L. Signal transduction by integrins: increased protein tyrosine phosphorylation caused by clustering of beta 1 integrins. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8392–8396. doi: 10.1073/pnas.88.19.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  31. Letourneur F., Klausner R. D. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. Science. 1992 Jan 3;255(5040):79–82. doi: 10.1126/science.1532456. [DOI] [PubMed] [Google Scholar]
  32. Martin K. J., McConkey C. L., Jacob A. K., Gonzalez E. A., Khan M., Baldassare J. J. Effect of U-73,122, an inhibitor of phospholipase C, on actions of parathyroid hormone in opossum kidney cells. Am J Physiol. 1994 Feb;266(2 Pt 2):F254–F258. doi: 10.1152/ajprenal.1994.266.2.F254. [DOI] [PubMed] [Google Scholar]
  33. Miyazaki S., Hashimoto N., Yoshimoto Y., Kishimoto T., Igusa Y., Hiramoto Y. Temporal and spatial dynamics of the periodic increase in intracellular free calcium at fertilization of golden hamster eggs. Dev Biol. 1986 Nov;118(1):259–267. doi: 10.1016/0012-1606(86)90093-x. [DOI] [PubMed] [Google Scholar]
  34. Miyazaki S. Inositol 1,4,5-trisphosphate-induced calcium release and guanine nucleotide-binding protein-mediated periodic calcium rises in golden hamster eggs. J Cell Biol. 1988 Feb;106(2):345–353. doi: 10.1083/jcb.106.2.345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Miyazaki S., Katayama Y., Swann K. Synergistic activation by serotonin and GTP analogue and inhibition by phorbol ester of cyclic Ca2+ rises in hamster eggs. J Physiol. 1990 Jul;426:209–227. doi: 10.1113/jphysiol.1990.sp018134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Miyazaki S., Shirakawa H., Nakada K., Honda Y. Essential role of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+ waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev Biol. 1993 Jul;158(1):62–78. doi: 10.1006/dbio.1993.1168. [DOI] [PubMed] [Google Scholar]
  37. Moore G. D., Ayabe T., Visconti P. E., Schultz R. M., Kopf G. S. Roles of heterotrimeric and monomeric G proteins in sperm-induced activation of mouse eggs. Development. 1994 Nov;120(11):3313–3323. doi: 10.1242/dev.120.11.3313. [DOI] [PubMed] [Google Scholar]
  38. Mori T., Gou M. W., Yoshida H., Saito S., Mori E. Expression of the signal transducing regions of CD4-like and lck genes in murine egg. Biochem Biophys Res Commun. 1992 Jan 31;182(2):527–533. doi: 10.1016/0006-291x(92)91764-h. [DOI] [PubMed] [Google Scholar]
  39. Nasr-Esfahani M., Johnson M. H., Aitken R. J. The effect of iron and iron chelators on the in-vitro block to development of the mouse preimplantation embryo: BAT6 a new medium for improved culture of mouse embryos in vitro. Hum Reprod. 1990 Nov;5(8):997–1003. doi: 10.1093/oxfordjournals.humrep.a137235. [DOI] [PubMed] [Google Scholar]
  40. Nishibe S., Wahl M. I., Hernández-Sotomayor S. M., Tonks N. K., Rhee S. G., Carpenter G. Increase of the catalytic activity of phospholipase C-gamma 1 by tyrosine phosphorylation. Science. 1990 Nov 30;250(4985):1253–1256. doi: 10.1126/science.1700866. [DOI] [PubMed] [Google Scholar]
  41. O'Sullivan A. J., Cheek T. R., Moreton R. B., Berridge M. J., Burgoyne R. D. Localization and heterogeneity of agonist-induced changes in cytosolic calcium concentration in single bovine adrenal chromaffin cells from video imaging of fura-2. EMBO J. 1989 Feb;8(2):401–411. doi: 10.1002/j.1460-2075.1989.tb03391.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Ohlendieck K., Dhume S. T., Partin J. S., Lennarz W. J. The sea urchin egg receptor for sperm: isolation and characterization of the intact, biologically active receptor. J Cell Biol. 1993 Aug;122(4):887–895. doi: 10.1083/jcb.122.4.887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Peres A., Bertollini L., Racca C. Characterization of Ca2+ transients induced by intracellular photorelease of InsP3 in mouse ovarian oocytes. Cell Calcium. 1991 Jul;12(7):457–465. doi: 10.1016/0143-4160(91)90028-d. [DOI] [PubMed] [Google Scholar]
  44. Pikó L., Clegg K. B. Quantitative changes in total RNA, total poly(A), and ribosomes in early mouse embryos. Dev Biol. 1982 Feb;89(2):362–378. doi: 10.1016/0012-1606(82)90325-6. [DOI] [PubMed] [Google Scholar]
  45. Rickords L. F., White K. L. Electroporation of inositol 1,4,5-triphosphate induces repetitive calcium oscillations in murine oocytes. J Exp Zool. 1993 Feb 1;265(2):178–184. doi: 10.1002/jez.1402650209. [DOI] [PubMed] [Google Scholar]
  46. Satoh N., Garbers D. L. Protein tyrosine kinase activity of eggs of the sea urchin Strongylocentrotus purpuratus: the regulation of its increase after fertilization. Dev Biol. 1985 Oct;111(2):515–519. doi: 10.1016/0012-1606(85)90503-2. [DOI] [PubMed] [Google Scholar]
  47. Stice S. L., Robl J. M. Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol Reprod Dev. 1990 Mar;25(3):272–280. doi: 10.1002/mrd.1080250309. [DOI] [PubMed] [Google Scholar]
  48. Stith B. J., Goalstone M., Silva S., Jaynes C. Inositol 1,4,5-trisphosphate mass changes from fertilization through first cleavage in Xenopus laevis. Mol Biol Cell. 1993 Apr;4(4):435–443. doi: 10.1091/mbc.4.4.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Suh P. G., Ryu S. H., Choi W. C., Lee K. Y., Rhee S. G. Monoclonal antibodies to three phospholipase C isozymes from bovine brain. J Biol Chem. 1988 Oct 5;263(28):14497–14504. [PubMed] [Google Scholar]
  50. Suh P. G., Ryu S. H., Moon K. H., Suh H. W., Rhee S. G. Cloning and sequence of multiple forms of phospholipase C. Cell. 1988 Jul 15;54(2):161–169. doi: 10.1016/0092-8674(88)90548-x. [DOI] [PubMed] [Google Scholar]
  51. Sun F. Z., Hoyland J., Huang X., Mason W., Moor R. M. A comparison of intracellular changes in porcine eggs after fertilization and electroactivation. Development. 1992 Aug;115(4):947–956. doi: 10.1242/dev.115.4.947. [DOI] [PubMed] [Google Scholar]
  52. Swann K. A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development. 1990 Dec;110(4):1295–1302. doi: 10.1242/dev.110.4.1295. [DOI] [PubMed] [Google Scholar]
  53. Swann K. Ca2+ oscillations and sensitization of Ca2+ release in unfertilized mouse eggs injected with a sperm factor. Cell Calcium. 1994 Apr;15(4):331–339. doi: 10.1016/0143-4160(94)90072-8. [DOI] [PubMed] [Google Scholar]
  54. Swann K. Different triggers for calcium oscillations in mouse eggs involve a ryanodine-sensitive calcium store. Biochem J. 1992 Oct 1;287(Pt 1):79–84. doi: 10.1042/bj2870079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Swann K., Igusa Y., Miyazaki S. Evidence for an inhibitory effect of protein kinase C on G-protein-mediated repetitive calcium transients in hamster eggs. EMBO J. 1989 Dec 1;8(12):3711–3718. doi: 10.1002/j.1460-2075.1989.tb08546.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Swann K., Ozil J. P. Dynamics of the calcium signal that triggers mammalian egg activation. Int Rev Cytol. 1994;152:183–222. doi: 10.1016/s0074-7696(08)62557-7. [DOI] [PubMed] [Google Scholar]
  57. Taylor C. T., Lawrence Y. M., Kingsland C. R., Biljan M. M., Cuthbertson K. S. Oscillations in intracellular free calcium induced by spermatozoa in human oocytes at fertilization. Hum Reprod. 1993 Dec;8(12):2174–2179. doi: 10.1093/oxfordjournals.humrep.a137999. [DOI] [PubMed] [Google Scholar]
  58. Taylor S. J., Chae H. Z., Rhee S. G., Exton J. H. Activation of the beta 1 isozyme of phospholipase C by alpha subunits of the Gq class of G proteins. Nature. 1991 Apr 11;350(6318):516–518. doi: 10.1038/350516a0. [DOI] [PubMed] [Google Scholar]
  59. Umezawa K., Atsumi S., Matsushima T., Takeuchi T. Enhancement of fibronectin expression by herbimycin A. Experientia. 1987 Jun 15;43(6):614–616. doi: 10.1007/BF02126351. [DOI] [PubMed] [Google Scholar]
  60. Vickers J. D. U73122 affects the equilibria between the phosphoinositides as well as phospholipase C activity in unstimulated and thrombin-stimulated human and rabbit platelets. J Pharmacol Exp Ther. 1993 Sep;266(3):1156–1163. [PubMed] [Google Scholar]
  61. Vincent C., Cheek T. R., Johnson M. H. Cell cycle progression of parthenogenetically activated mouse oocytes to interphase is dependent on the level of internal calcium. J Cell Sci. 1992 Oct;103(Pt 2):389–396. doi: 10.1242/jcs.103.2.389. [DOI] [PubMed] [Google Scholar]
  62. Wahl M. I., Nishibe S., Kim J. W., Kim H., Rhee S. G., Carpenter G. Identification of two epidermal growth factor-sensitive tyrosine phosphorylation sites of phospholipase C-gamma in intact HSC-1 cells. J Biol Chem. 1990 Mar 5;265(7):3944–3948. [PubMed] [Google Scholar]
  63. Walensky L. D., Snyder S. H. Inositol 1,4,5-trisphosphate receptors selectively localized to the acrosomes of mammalian sperm. J Cell Biol. 1995 Aug;130(4):857–869. doi: 10.1083/jcb.130.4.857. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Whittingham D. G. Culture of mouse ova. J Reprod Fertil Suppl. 1971 Jun;14:7–21. [PubMed] [Google Scholar]
  65. Willems P. H., Van de Put F. H., Engbersen R., Bosch R. R., Van Hoof H. J., de Pont J. J. Induction of Ca2+ oscillations by selective, U73122-mediated, depletion of inositol-trisphosphate-sensitive Ca2+ stores in rabbit pancreatic acinar cells. Pflugers Arch. 1994 Jun;427(3-4):233–243. doi: 10.1007/BF00374529. [DOI] [PubMed] [Google Scholar]
  66. Xu Z., Kopf G. S., Schultz R. M. Involvement of inositol 1,4,5-trisphosphate-mediated Ca2+ release in early and late events of mouse egg activation. Development. 1994 Jul;120(7):1851–1859. doi: 10.1242/dev.120.7.1851. [DOI] [PubMed] [Google Scholar]
  67. Yamaki H., Iguchi-Ariga S. M., Ariga H. Inhibition of c-myc gene expression in murine lymphoblastoma cells by geldanamycin and herbimycin, antibiotics of benzoquinoid ansamycin group. J Antibiot (Tokyo) 1989 Apr;42(4):604–610. doi: 10.7164/antibiotics.42.604. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES