Abstract
Vitamin B12-dependent methionine synthase is an important enzyme for sulphur amino acid, folate polyamine metabolism, S-adenosylmethionine metabolism and also in the methylation pathway of DNA, RNA, proteins and lipids. Consequently, studies aiming at exploring the control and regulation of methionine synthase are of particular interest. Here we report the modulation of enzyme activity in vitro by polyamines. Although putrescine, cadaverine, spermine and spermidine all stimulated enzyme activity, the last two were the most potent, causing increases in enzyme activity up to 400%. The EC50 for spermine was determined as 8 microM and for spermidine 40 microM. The physiological concentration for spermine has been reported to be 15-19 microM. Spermine was found to increase both the Km and the V(max) with respect to methyltetrahydrofolate for the enzyme. These data support the hypothesis that spermine and spermidine are feedback regulators of methionine synthase both in vivo and in vitro and are consistent with the polyamines' regulating cell signalling pathways.
Full Text
The Full Text of this article is available as a PDF (379.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Allen R. H., Stabler S. P., Savage D. G., Lindenbaum J. Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. FASEB J. 1993 Nov;7(14):1344–1353. doi: 10.1096/fasebj.7.14.7901104. [DOI] [PubMed] [Google Scholar]
- Alston T. A. Inhibition of vitamin B12-dependent methionine biosynthesis by chloroform and carbon tetrachloride. Biochem Pharmacol. 1991 Nov 27;42(12):R25–R28. doi: 10.1016/0006-2952(91)90226-u. [DOI] [PubMed] [Google Scholar]
- Ast T., Nicolaou A., Anderson M. M., James C., Gibbons W. A. Purification, properties and inhibition of rat liver cytosolic vitamin B12-dependent methionine synthase. Biochem Soc Trans. 1994 May;22(2):217S–217S. doi: 10.1042/bst022217s. [DOI] [PubMed] [Google Scholar]
- Banerjee R. V., Frasca V., Ballou D. P., Matthews R. G. Participation of cob(I) alamin in the reaction catalyzed by methionine synthase from Escherichia coli: a steady-state and rapid reaction kinetic analysis. Biochemistry. 1990 Dec 18;29(50):11101–11109. doi: 10.1021/bi00502a013. [DOI] [PubMed] [Google Scholar]
- Banerjee R. V., Harder S. R., Ragsdale S. W., Matthews R. G. Mechanism of reductive activation of cobalamin-dependent methionine synthase: an electron paramagnetic resonance spectroelectrochemical study. Biochemistry. 1990 Feb 6;29(5):1129–1135. doi: 10.1021/bi00457a005. [DOI] [PubMed] [Google Scholar]
- Banerjee R. V., Matthews R. G. Cobalamin-dependent methionine synthase. FASEB J. 1990 Mar;4(5):1450–1459. doi: 10.1096/fasebj.4.5.2407589. [DOI] [PubMed] [Google Scholar]
- Barak A. J., Beckenhauer H. C., Tuma D. J. Hepatic transmethylation and blood alcohol levels. Alcohol Alcohol. 1991;26(2):125–128. doi: 10.1093/oxfordjournals.alcalc.a045092. [DOI] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
- Burke G. T., Mangum J. H., Brodie J. D. Mechanism of mammalian cobalamin-dependent methionine biosynthesis. Biochemistry. 1971 Aug 3;10(16):3079–3085. doi: 10.1021/bi00792a015. [DOI] [PubMed] [Google Scholar]
- Chanarin I., Deacon R., Lumb M., Perry J. Cobalamin-folate interrelations. Blood Rev. 1989 Dec;3(4):211–215. doi: 10.1016/0268-960x(89)90028-3. [DOI] [PubMed] [Google Scholar]
- Chen Z., Crippen K., Gulati S., Banerjee R. Purification and kinetic mechanism of a mammalian methionine synthase from pig liver. J Biol Chem. 1994 Nov 4;269(44):27193–27197. [PubMed] [Google Scholar]
- Ficker E., Taglialatela M., Wible B. A., Henley C. M., Brown A. M. Spermine and spermidine as gating molecules for inward rectifier K+ channels. Science. 1994 Nov 11;266(5187):1068–1072. doi: 10.1126/science.7973666. [DOI] [PubMed] [Google Scholar]
- Fredlund J. O., Johansson M. C., Dahlberg E., Oredsson S. M. Ornithine decarboxylase and S-adenosylmethionine decarboxylase expression during the cell cycle of Chinese hamster ovary cells. Exp Cell Res. 1995 Jan;216(1):86–92. doi: 10.1006/excr.1995.1011. [DOI] [PubMed] [Google Scholar]
- Hu J., Mahmoud M. I., el-Fakahany E. E. Polyamines inhibit nitric oxide synthase in rat cerebellum. Neurosci Lett. 1994 Jul 4;175(1-2):41–45. doi: 10.1016/0304-3940(94)91073-1. [DOI] [PubMed] [Google Scholar]
- Hughes G., Starling A. P., East J. M., Lee A. G. Mechanism of inhibition of the Ca(2+)-ATPase by spermine and other polycationic compounds. Biochemistry. 1994 Apr 26;33(16):4745–4754. doi: 10.1021/bi00182a001. [DOI] [PubMed] [Google Scholar]
- Kenyon S. H., Ast T., Nicolaou A., Gibbons W. A. Polyamines can regulate vitamin B12 dependent methionine synthase activity. Biochem Soc Trans. 1995 Aug;23(3):444S–444S. doi: 10.1042/bst023444s. [DOI] [PubMed] [Google Scholar]
- Koza R. A., Herbst E. J. Deficiencies in DNA replication and cell-cycle progression in polyamine-depleted HeLa cells. Biochem J. 1992 Jan 1;281(Pt 1):87–93. doi: 10.1042/bj2810087. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milam K. M., Deen D. F., Marton L. J. Cell proliferation and polyamine metabolism in 9L cells treated with (2R,5R)-6-heptyne-2,5-diamine or alpha-difluoromethylornithine. Cell Tissue Kinet. 1989 May;22(3):269–277. doi: 10.1111/j.1365-2184.1989.tb00212.x. [DOI] [PubMed] [Google Scholar]
- Mohammed R., Lamand M. Cardiovascular lesions in cobalt-vitamin B12 deficient sheep. Ann Rech Vet. 1986;17(4):447–450. [PubMed] [Google Scholar]
- Moruzzi M., Barbiroli B., Monti M. G., Tadolini B., Hakim G., Mezzetti G. Inhibitory action of polyamines on protein kinase C association to membranes. Biochem J. 1987 Oct 1;247(1):175–180. doi: 10.1042/bj2470175. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Munir M., Subramaniam S., McGonigle P. Polyamines modulate the neurotoxic effects of NMDA in vivo. Brain Res. 1993 Jul 9;616(1-2):163–170. doi: 10.1016/0006-8993(93)90205-2. [DOI] [PubMed] [Google Scholar]
- Nicolaou A., Ast T., Garcia C. V., Anderson M. M., Gibbons J. M., Gibbons W. A. In vitro NO and N2O inhibition of the branch point enzyme vitamin B12 dependent methionine synthase from rat brain synaptosomes. Biochem Soc Trans. 1994 Aug;22(3):296S–296S. doi: 10.1042/bst022296s. [DOI] [PubMed] [Google Scholar]
- Nicolaou A., Kenyon S. H., Gibbons J. M., Ast T., Gibbons W. A. In vitro inactivation of mammalian methionine synthase by nitric oxide. Eur J Clin Invest. 1996 Feb;26(2):167–170. doi: 10.1046/j.1365-2362.1996.122254.x. [DOI] [PubMed] [Google Scholar]
- Refsum H., Ueland P. M. Clinical significance of pharmacological modulation of homocysteine metabolism. Trends Pharmacol Sci. 1990 Oct;11(10):411–416. doi: 10.1016/0165-6147(90)90148-2. [DOI] [PubMed] [Google Scholar]
- Rock D. M., MacDonald R. L. Spermine and related polyamines produce a voltage-dependent reduction of N-methyl-D-aspartate receptor single-channel conductance. Mol Pharmacol. 1992 Jul;42(1):157–164. [PubMed] [Google Scholar]
- Scott R. H., Sutton K. G., Dolphin A. C. Interactions of polyamines with neuronal ion channels. Trends Neurosci. 1993 Apr;16(4):153–160. doi: 10.1016/0166-2236(93)90124-5. [DOI] [PubMed] [Google Scholar]
- Seiler N., Atanassov C. L. The natural polyamines and the immune system. Prog Drug Res. 1994;43:87–141. doi: 10.1007/978-3-0348-7156-3_4. [DOI] [PubMed] [Google Scholar]
- Seiler N. Pharmacological properties of the natural polyamines and their depletion by biosynthesis inhibitors as a therapeutic approach. Prog Drug Res. 1991;37:107–159. doi: 10.1007/978-3-0348-7139-6_3. [DOI] [PubMed] [Google Scholar]
- Smith J. R., Smith J. G. Effects of methylmercury in vitro on methionine synthase activity in various rat tissues. Bull Environ Contam Toxicol. 1990 Nov;45(5):649–654. doi: 10.1007/BF01700981. [DOI] [PubMed] [Google Scholar]
- Stabler S. P., Brass E. P., Marcell P. D., Allen R. H. Inhibition of cobalamin-dependent enzymes by cobalamin analogues in rats. J Clin Invest. 1991 Apr;87(4):1422–1430. doi: 10.1172/JCI115148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ueland P. M., Refsum H. Plasma homocysteine, a risk factor for vascular disease: plasma levels in health, disease, and drug therapy. J Lab Clin Med. 1989 Nov;114(5):473–501. [PubMed] [Google Scholar]
- Utley C. S., Marcell P. D., Allen R. H., Antony A. C., Kolhouse J. F. Isolation and characterization of methionine synthetase from human placenta. J Biol Chem. 1985 Nov 5;260(25):13656–13665. [PubMed] [Google Scholar]
- Votyakova T. V., Bazhenova E. N., Zvjagilskaya R. A. Yeast mitochondrial calcium uptake: regulation by polyamines and magnesium ions. J Bioenerg Biomembr. 1993 Oct;25(5):569–574. doi: 10.1007/BF01108413. [DOI] [PubMed] [Google Scholar]
- WEISSBACH H., PETERKOFSKY A., REDFIELD B. G., DICKERMAN H. STUDIES ON THE TERMINAL REACTION IN THE BIOSYNTHESIS OF METHIONINE. J Biol Chem. 1963 Oct;238:3318–3324. [PubMed] [Google Scholar]
- Wainfan E., Poirier L. A. Methyl groups in carcinogenesis: effects on DNA methylation and gene expression. Cancer Res. 1992 Apr 1;52(7 Suppl):2071s–2077s. [PubMed] [Google Scholar]
- Wang J. Y., Viar M. J., Johnson L. R. Regulation of transglutaminase activity by polyamines in the gastrointestinal mucosa of rats. Proc Soc Exp Biol Med. 1994 Jan;205(1):20–28. doi: 10.3181/00379727-205-43672. [DOI] [PubMed] [Google Scholar]
- Wei T., Tao M. Human erythrocyte casein kinase II: characterization and phosphorylation of membrane cytoskeletal proteins. Arch Biochem Biophys. 1993 Nov 15;307(1):206–216. doi: 10.1006/abbi.1993.1580. [DOI] [PubMed] [Google Scholar]
- Yagiela J. A. Health hazards and nitrous oxide: a time for reappraisal. Anesth Prog. 1991 Jan-Feb;38(1):1–11. [PMC free article] [PubMed] [Google Scholar]