Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 1;316(Pt 2):691–694. doi: 10.1042/bj3160691

Differential distribution of ferulic acid to the major plasma constituents in relation to its potential as an antioxidant.

C Castelluccio 1, G P Bolwell 1, C Gerrish 1, C Rice-Evans 1
PMCID: PMC1217403  PMID: 8687419

Abstract

The hydroxycinnamates, intermediates in the phenylpropanoid synthetic pathway, are effective in enhancing the resistance of low-density lipoprotein (LDL) to oxidation in the order caffeic acid > ferulic acid > p-coumaric acid. It is unclear whether the mode of action of ferulic acid as an antioxidant is based on its activities in the aqueous or the lipophilic phase. Partitioning of 14C-labelled ferulic acid into plasma and its components, LDL and the albumin-rich fractions, has been studied under conditions of maximum aqueous solubility. The majority of ferulic acid associates with the albumin-rich fraction of the plasma, although a proportion is also found to partition between the LDL and aqueous phases; however, ferulic acid does not associate with the lipid portion of the LDL particle, suggesting that it exerts its antioxidant properties from the aqueous phase. This is of particular interest since the results demonstrate that ferulic acid is a more effective antioxidant against LDL oxidation than the hydrophilic antioxidant ascorbic acid.

Full Text

The Full Text of this article is available as a PDF (242.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bors W., Saran M. Radical scavenging by flavonoid antioxidants. Free Radic Res Commun. 1987;2(4-6):289–294. doi: 10.3109/10715768709065294. [DOI] [PubMed] [Google Scholar]
  2. Castelluccio C., Paganga G., Melikian N., Bolwell G. P., Pridham J., Sampson J., Rice-Evans C. Antioxidant potential of intermediates in phenylpropanoid metabolism in higher plants. FEBS Lett. 1995 Jul 10;368(1):188–192. doi: 10.1016/0014-5793(95)00639-q. [DOI] [PubMed] [Google Scholar]
  3. Chung B. H., Wilkinson T., Geer J. C., Segrest J. P. Preparative and quantitative isolation of plasma lipoproteins: rapid, single discontinuous density gradient ultracentrifugation in a vertical rotor. J Lipid Res. 1980 Mar;21(3):284–291. [PubMed] [Google Scholar]
  4. Degli Esposti M., Bertoli E., Parenti-Castelli G., Fato R., Mascarello S., Lenaz G. Incorporation of ubiquinone homologs into lipid vesicles and mitochondrial membranes. Arch Biochem Biophys. 1981 Aug;210(1):21–32. doi: 10.1016/0003-9861(81)90159-4. [DOI] [PubMed] [Google Scholar]
  5. Graf E. Antioxidant potential of ferulic acid. Free Radic Biol Med. 1992 Oct;13(4):435–448. doi: 10.1016/0891-5849(92)90184-i. [DOI] [PubMed] [Google Scholar]
  6. Hogg N., Rice-Evans C., Darley-Usmar V., Wilson M. T., Paganga G., Bourne L. The role of lipid hydroperoxides in the myoglobin-dependent oxidation of LDL. Arch Biochem Biophys. 1994 Oct;314(1):39–44. doi: 10.1006/abbi.1994.1409. [DOI] [PubMed] [Google Scholar]
  7. Kono Y., Shibata H., Kodama Y., Sawa Y. The suppression of the N-nitrosating reaction by chlorogenic acid. Biochem J. 1995 Dec 15;312(Pt 3):947–953. doi: 10.1042/bj3120947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Landolfi R., Mower R. L., Steiner M. Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure-activity relations. Biochem Pharmacol. 1984 May 1;33(9):1525–1530. doi: 10.1016/0006-2952(84)90423-4. [DOI] [PubMed] [Google Scholar]
  9. Lands W. E., Hanel A. M. Phenolic anticyclooxygenase agents in antiinflammatory and analgesic therapy. Prostaglandins. 1982 Aug;24(2):271–277. doi: 10.1016/0090-6980(82)90153-8. [DOI] [PubMed] [Google Scholar]
  10. Mangiapane H., Thomson J., Salter A., Brown S., Bell G. D., White D. A. The inhibition of the oxidation of low density lipoprotein by (+)-catechin, a naturally occurring flavonoid. Biochem Pharmacol. 1992 Feb 4;43(3):445–450. doi: 10.1016/0006-2952(92)90562-w. [DOI] [PubMed] [Google Scholar]
  11. Markwell M. A., Haas S. M., Bieber L. L., Tolbert N. E. A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Anal Biochem. 1978 Jun 15;87(1):206–210. doi: 10.1016/0003-2697(78)90586-9. [DOI] [PubMed] [Google Scholar]
  12. Miller N. J., Rice-Evans C., Davies M. J., Gopinathan V., Milner A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin Sci (Lond) 1993 Apr;84(4):407–412. doi: 10.1042/cs0840407. [DOI] [PubMed] [Google Scholar]
  13. Moroney M. A., Alcaraz M. J., Forder R. A., Carey F., Hoult J. R. Selectivity of neutrophil 5-lipoxygenase and cyclo-oxygenase inhibition by an anti-inflammatory flavonoid glycoside and related aglycone flavonoids. J Pharm Pharmacol. 1988 Nov;40(11):787–792. doi: 10.1111/j.2042-7158.1988.tb05173.x. [DOI] [PubMed] [Google Scholar]
  14. Namiki M. Antioxidants/antimutagens in food. Crit Rev Food Sci Nutr. 1990;29(4):273–300. doi: 10.1080/10408399009527528. [DOI] [PubMed] [Google Scholar]
  15. Nourooz-Zadeh J., Tajaddini-Sarmadi J., Wolff S. P. Measurement of plasma hydroperoxide concentrations by the ferrous oxidation-xylenol orange assay in conjunction with triphenylphosphine. Anal Biochem. 1994 Aug 1;220(2):403–409. doi: 10.1006/abio.1994.1357. [DOI] [PubMed] [Google Scholar]
  16. Rice-Evans C. A., Miller N. J., Bolwell P. G., Bramley P. M., Pridham J. B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic Res. 1995 Apr;22(4):375–383. doi: 10.3109/10715769509145649. [DOI] [PubMed] [Google Scholar]
  17. Salah N., Miller N. J., Paganga G., Tijburg L., Bolwell G. P., Rice-Evans C. Polyphenolic flavanols as scavengers of aqueous phase radicals and as chain-breaking antioxidants. Arch Biochem Biophys. 1995 Oct 1;322(2):339–346. doi: 10.1006/abbi.1995.1473. [DOI] [PubMed] [Google Scholar]
  18. Sharma O. P. Antioxidant activity of curcumin and related compounds. Biochem Pharmacol. 1976 Aug 1;25(15):1811–1812. doi: 10.1016/0006-2952(76)90421-4. [DOI] [PubMed] [Google Scholar]
  19. Toda S., Kumura M., Ohnishi M. Effects of phenolcarboxylic acids on superoxide anion and lipid peroxidation induced by superoxide anion. Planta Med. 1991 Feb;57(1):8–10. doi: 10.1055/s-2006-960005. [DOI] [PubMed] [Google Scholar]
  20. Wolffram S., Weber T., Grenacher B., Scharrer E. A Na(+)-dependent mechanism is involved in mucosal uptake of cinnamic acid across the jejunal brush border in rats. J Nutr. 1995 May;125(5):1300–1308. doi: 10.1093/jn/125.5.1300. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES