Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):759–764. doi: 10.1042/bj3160759

Differentiation of BC3H1 smooth muscle cells changes the bivalent cation selectivity of the capacitative Ca2+ entry pathway.

L M Broad 1, D A Powis 1, C W Taylor 1
PMCID: PMC1217415  PMID: 8670149

Abstract

Differentiation of BC3H1 cells leads to expression of a variety of proteins characteristic of smooth muscle and to changes in the behaviour of intracellular Ca2+ stores. Treatment of both differentiated and undifferentiated cells with thapsigargin (2 microM) emptied their intracellular Ca2+ stores, and in the presence of extracellular Ca2+ caused an increase in cytosolic [Ca2+] that rapidly reversed after its removal. The amplitudes of these capacitative Ca2+ entry signals were 101 +/- 8 nM (n = 42) in differentiated cells and 188 +/- 16 nM (n = 35) in undifferentiated cells. Mn2+ entry in thapsigargin-treated cells, measured by recording the quenching of cytosolic fura 2 fluorescence, was 374 +/- 26% (n = 34) and 154 +/- 7% (n = 41) of control rates in differentiated and undifferentiated cells, respectively. Empty stores caused Ba2+ entry to increase to 282 +/- 20% (n = 8) of its basal rate in differentiated cells and to 187 +/- 20% (n = 8) in undifferentiated cells. Rates of Ca2+ extrusion, measured after rapid removal of extracellular Ca2+ from cells in which capacitative Ca2+ entry had been activated, were similar in differentiated (t1/2 = 23 +/- 2 s, n = 7) and undifferentiated (23 +/- 1 s, n = 6) cells. The different relationships between capacitative Ca2+ and Mn2+ signals are not, therefore, a consequence of more active Ca2+ extrusion mechanisms in differentiated cells, nor are they a consequence of different fura 2 loadings in the two cell types. We conclude that during differentiation of BC3Hl cells, the cation selectivity of the capacitative pathway changes, becoming relatively more permeable to Mn2+ and Ba2+. The change may result either from expression of a different capacitative pathway or from modification of the permeation properties of a single pathway.

Full Text

The Full Text of this article is available as a PDF (473.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ambler S. K., Taylor P. Mobilization of intracellular calcium by alpha 1-adrenergic receptor activation in muscle cell monolayers. J Biol Chem. 1986 May 5;261(13):5866–5871. [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Byron K. L., Taylor C. W. Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores. J Biol Chem. 1993 Apr 5;268(10):6945–6952. [PubMed] [Google Scholar]
  4. Byron K., Taylor C. W. Vasopressin stimulation of Ca2+ mobilization, two bivalent cation entry pathways and Ca2+ efflux in A7r5 rat smooth muscle cells. J Physiol. 1995 Jun 1;485(Pt 2):455–468. doi: 10.1113/jphysiol.1995.sp020742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Smedt H., Parys J. B., Himpens B., Missiaen L., Borghgraef R. Changes in the mechanism of Ca2(+) mobilization during the differentiation of BC3H1 muscle cells. Biochem J. 1991 Jan 1;273(Pt 1):219–223. doi: 10.1042/bj2730219. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Gilon P., Bird G. J., Bian X., Yakel J. L., Putney J. W., Jr The Ca(2+)-mobilizing actions of a Jurkat cell extract on mammalian cells and Xenopus laevis oocytes. J Biol Chem. 1995 Apr 7;270(14):8050–8055. doi: 10.1074/jbc.270.14.8050. [DOI] [PubMed] [Google Scholar]
  7. Glennon M. C., Bird G. S., Kwan C. Y., Putney J. W., Jr Actions of vasopressin and the Ca(2+)-ATPase inhibitor, thapsigargin, on Ca2+ signaling in hepatocytes. J Biol Chem. 1992 Apr 25;267(12):8230–8233. [PubMed] [Google Scholar]
  8. Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
  9. Hallam T. J., Rink T. J. Agonists stimulate divalent cation channels in the plasma membrane of human platelets. FEBS Lett. 1985 Jul 8;186(2):175–179. doi: 10.1016/0014-5793(85)80703-1. [DOI] [PubMed] [Google Scholar]
  10. Hargreaves A. C., Lummis S. C., Taylor C. W. Ca2+ permeability of cloned and native 5-hydroxytryptamine type 3 receptors. Mol Pharmacol. 1994 Dec;46(6):1120–1128. [PubMed] [Google Scholar]
  11. Hoth M., Penner R. Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature. 1992 Jan 23;355(6358):353–356. doi: 10.1038/355353a0. [DOI] [PubMed] [Google Scholar]
  12. Kass G. E., Webb D. L., Chow S. C., Llopis J., Berggren P. O. Receptor-mediated Mn2+ influx in rat hepatocytes: comparison of cells loaded with Fura-2 ester and cells microinjected with Fura-2 salt. Biochem J. 1994 Aug 15;302(Pt 1):5–9. doi: 10.1042/bj3020005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kim H. Y., Thomas D., Hanley M. R. Chromatographic resolution of an intracellular calcium influx factor from thapsigargin-activated Jurkat cells. Evidence for multiple activities influencing calcium elevation in Xenopus oocytes. J Biol Chem. 1995 Apr 28;270(17):9706–9708. doi: 10.1074/jbc.270.17.9706. [DOI] [PubMed] [Google Scholar]
  14. Kwan C. Y., Putney J. W., Jr Uptake and intracellular sequestration of divalent cations in resting and methacholine-stimulated mouse lacrimal acinar cells. Dissociation by Sr2+ and Ba2+ of agonist-stimulated divalent cation entry from the refilling of the agonist-sensitive intracellular pool. J Biol Chem. 1990 Jan 15;265(2):678–684. [PubMed] [Google Scholar]
  15. Lindsay A. R., Tinker A., Williams A. J. How does ryanodine modify ion handling in the sheep cardiac sarcoplasmic reticulum Ca(2+)-release channel? J Gen Physiol. 1994 Sep;104(3):425–447. doi: 10.1085/jgp.104.3.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Lückhoff A., Clapham D. E. Inositol 1,3,4,5-tetrakisphosphate activates an endothelial Ca(2+)-permeable channel. Nature. 1992 Jan 23;355(6358):356–358. doi: 10.1038/355356a0. [DOI] [PubMed] [Google Scholar]
  17. Merritt J. E., Hallam T. J. Platelets and parotid acinar cells have different mechanisms for agonist-stimulated divalent cation entry. J Biol Chem. 1988 May 5;263(13):6161–6164. [PubMed] [Google Scholar]
  18. Morgan A. J., Jacob R. Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J. 1994 Jun 15;300(Pt 3):665–672. doi: 10.1042/bj3000665. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Palade P., Dettbarn C., Brunder D., Stein P., Hals G. Pharmacology of calcium release from sarcoplasmic reticulum. J Bioenerg Biomembr. 1989 Apr;21(2):295–320. doi: 10.1007/BF00812074. [DOI] [PubMed] [Google Scholar]
  20. Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
  21. Penner R., Fasolato C., Hoth M. Calcium influx and its control by calcium release. Curr Opin Neurobiol. 1993 Jun;3(3):368–374. doi: 10.1016/0959-4388(93)90130-q. [DOI] [PubMed] [Google Scholar]
  22. Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
  23. Putney J. W., Jr Capacitative calcium entry revisited. Cell Calcium. 1990 Nov-Dec;11(10):611–624. doi: 10.1016/0143-4160(90)90016-n. [DOI] [PubMed] [Google Scholar]
  24. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  25. Richardson A., Taylor C. W. Effects of Ca2+ chelators on purified inositol 1,4,5-trisphosphate (InsP3) receptors and InsP3-stimulated Ca2+ mobilization. J Biol Chem. 1993 Jun 5;268(16):11528–11533. [PubMed] [Google Scholar]
  26. Schubert D., Harris A. J., Devine C. E., Heinemann S. Characterization of a unique muscle cell line. J Cell Biol. 1974 May;61(2):398–413. doi: 10.1083/jcb.61.2.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Sorbera L. A., Morad M. Atrionatriuretic peptide transforms cardiac sodium channels into calcium-conducting channels. Science. 1990 Feb 23;247(4945):969–973. doi: 10.1126/science.2154853. [DOI] [PubMed] [Google Scholar]
  28. Spizz G., Roman D., Strauss A., Olson E. N. Serum and fibroblast growth factor inhibit myogenic differentiation through a mechanism dependent on protein synthesis and independent of cell proliferation. J Biol Chem. 1986 Jul 15;261(20):9483–9488. [PubMed] [Google Scholar]
  29. Takemura H., Hughes A. R., Thastrup O., Putney J. W., Jr Activation of calcium entry by the tumor promoter thapsigargin in parotid acinar cells. Evidence that an intracellular calcium pool and not an inositol phosphate regulates calcium fluxes at the plasma membrane. J Biol Chem. 1989 Jul 25;264(21):12266–12271. [PubMed] [Google Scholar]
  30. Taylor C. W., Richardson A. Structure and function of inositol trisphosphate receptors. Pharmacol Ther. 1991;51(1):97–137. doi: 10.1016/0163-7258(91)90043-l. [DOI] [PubMed] [Google Scholar]
  31. Thastrup O., Cullen P. J., Drøbak B. K., Hanley M. R., Dawson A. P. Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci U S A. 1990 Apr;87(7):2466–2470. doi: 10.1073/pnas.87.7.2466. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Zhao H., Khademazad M., Muallem S. Agonist-mediated Ca2+ release in permeabilized UMR-106-01 cells. Transport properties and generation of inositol 1,4,5-trisphosphate. J Biol Chem. 1990 Sep 5;265(25):14822–14827. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES