Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):787–792. doi: 10.1042/bj3160787

Oligomannosides or oligosaccharide-lipids as potential substrates for rat liver cytosolic alpha-D-mannosidase.

T Grard 1, V Herman 1, A Saint-Pol 1, D Kmiecik 1, O Labiau 1, A M Mir 1, C Alonso 1, A Verbert 1, R Cacan 1, J C Michalski 1
PMCID: PMC1217419  PMID: 8670153

Abstract

We have previously reported the substrate specificity of the cytosolic alpha-D-mannosidase purified from rat liver using Man9GlcNAc, i.e. Man alpha 1-2Man alpha 1-3(Man alpha 1-2Man alpha 1-6)Man alpha 1-6(Man alpha 1-2Man alpha 1-2Man alpha 1-3) Man beta 1-4G1cNAc, as substrate [Grard, Saint-Pol, Haeuw, Alonso, Wieruszeski, Strecker and Michalski (1994) Eur. J. Biochem. 223, 99-106]. Man9 G1cNAc is hydrolysed giving Man5GlcNAc, i.e. Man alpha 1-2 Man alpha 1-2Man alpha 1-3(Man alpha 1-6)Man beta 1-4GlcNAc, possessing the same structure as the oligosaccharide of the dolichol pathway formed in the cytosolic compartment during the biosynthesis of N-glycosylprotein glycans. We study here the activity of the purified cytosolic alpha-D-mannosidase towards the oligosaccharide-diphosphodolichol intermediates formed during the biosynthesis of N-glycans, and also towards soluble oligosaccharides released from the endoplasmic reticulum which are glucosylated or not and possessing at their reducing end either a single N-acetylglucosamine residue or a di-N-acetylchitobiose sequence. We demonstrate that (1) dolichol pyrophosphate oligosaccharide substrates are poorly hydrolysed by the cytosolic alpha-D-mannosidase; (2) oligosaccharides with a terminal reducing di-N-acetylchitobiose sequence are not hydrolysed at all; (3) soluble oligosaccharides bearing a single reducing N-acetylglucosamine are the real substrates for the enzyme. These results suggest a role for alpha-D-mannosidase in the catabolism of glycans released from the endoplasmic reticulum rather than in the regulation of the biosynthesis of asparagine-linked oligosaccharides.

Full Text

The Full Text of this article is available as a PDF (526.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anumula K. R., Spiro R. G. Release of glucose-containing polymannose oligosaccharides during glycoprotein biosynthesis. Studies with thyroid microsomal enzymes and slices. J Biol Chem. 1983 Dec 25;258(24):15274–15282. [PubMed] [Google Scholar]
  2. Bischoff J., Kornfeld R. Evidence for an alpha-mannosidase in endoplasmic reticulum of rat liver. J Biol Chem. 1983 Jul 10;258(13):7907–7910. [PubMed] [Google Scholar]
  3. Bischoff J., Kornfeld R. The soluble form of rat liver alpha-mannosidase is immunologically related to the endoplasmic reticulum membrane alpha-mannosidase. J Biol Chem. 1986 Apr 5;261(10):4758–4765. [PubMed] [Google Scholar]
  4. Cacan R., Cecchelli R., Verbert A. Catabolic pathway of oligosaccharide-diphospho-dolichol. Study of the fate of the oligosaccharidic moiety in mouse splenocytes. Eur J Biochem. 1987 Jul 15;166(2):469–474. doi: 10.1111/j.1432-1033.1987.tb13539.x. [DOI] [PubMed] [Google Scholar]
  5. Cacan R., Dengremont C., Labiau O., Kmiécik D., Mir A. M., Verbert A. Occurrence of a cytosolic neutral chitobiase activity involved in oligomannoside degradation: a study with Madin-Darby bovine kidney (MDBK) cells. Biochem J. 1996 Jan 15;313(Pt 2):597–602. doi: 10.1042/bj3130597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cacan R., Hoflack B., Verbert A. Fate of oligosaccharide-lipid intermediates synthesized by resting rat-spleen lymphocytes. Eur J Biochem. 1980 May;106(2):473–479. doi: 10.1111/j.1432-1033.1980.tb04594.x. [DOI] [PubMed] [Google Scholar]
  7. Cacan R., Labiau O., Mir A. M., Verbert A. Effect of cell attachment and growth on the synthesis and fate of dolichol-linked oligosaccharides in Chinese hamster ovary cells. Eur J Biochem. 1993 Aug 1;215(3):873–881. doi: 10.1111/j.1432-1033.1993.tb18105.x. [DOI] [PubMed] [Google Scholar]
  8. Cacan R., Villers C., Bélard M., Kaiden A., Krag S. S., Verbert A. Different fates of the oligosaccharide moieties of lipid intermediates. Glycobiology. 1992 Apr;2(2):127–136. doi: 10.1093/glycob/2.2.127. [DOI] [PubMed] [Google Scholar]
  9. Daniel P. F., Winchester B., Warren C. D. Mammalian alpha-mannosidases--multiple forms but a common purpose? Glycobiology. 1994 Oct;4(5):551–566. doi: 10.1093/glycob/4.5.551. [DOI] [PubMed] [Google Scholar]
  10. De Gasperi R., al Daher S., Winchester B. G., Warren C. D. Substrate specificity of the bovine and feline neutral alpha-mannosidases. Biochem J. 1992 Aug 15;286(Pt 1):55–63. doi: 10.1042/bj2860055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Elting J. J., Chen W. W., Lennarz W. J. Characterization of a glucosidase involved in an initial step in the processing of oligosaccharide chains. J Biol Chem. 1980 Mar 25;255(6):2325–2331. [PubMed] [Google Scholar]
  12. Grard T., Saint-Pol A., Haeuw J. F., Alonso C., Wieruszeski J. M., Strecker G., Michalski J. C. Soluble forms of alpha-D-mannosidases from rat liver. Separation and characterization of two enzymic forms with different substrate specificities. Eur J Biochem. 1994 Jul 1;223(1):99–106. doi: 10.1111/j.1432-1033.1994.tb18970.x. [DOI] [PubMed] [Google Scholar]
  13. Grinna L. S., Robbins P. W. Glycoprotein biosynthesis. Rat liver microsomal glucosidases which process oligosaccharides. J Biol Chem. 1979 Sep 25;254(18):8814–8818. [PubMed] [Google Scholar]
  14. Haeuw J. F., Strecker G., Wieruszeski J. M., Montreuil J., Michalski J. C. Substrate specificity of rat liver cytosolic alpha-D-mannosidase. Novel degradative pathway for oligomannosidic type glycans. Eur J Biochem. 1991 Dec 18;202(3):1257–1268. doi: 10.1111/j.1432-1033.1991.tb16498.x. [DOI] [PubMed] [Google Scholar]
  15. Hanover J. A., Lennarz W. J. Transmembrane assembly of N-linked glycoproteins. Studies on the topology of saccharide synthesis. J Biol Chem. 1982 Mar 25;257(6):2787–2794. [PubMed] [Google Scholar]
  16. Hirschberg C. B., Snider M. D. Topography of glycosylation in the rough endoplasmic reticulum and Golgi apparatus. Annu Rev Biochem. 1987;56:63–87. doi: 10.1146/annurev.bi.56.070187.000431. [DOI] [PubMed] [Google Scholar]
  17. Kang M. S., Bowlin T. L., Vijay I. K., Sunkara S. P. Accumulation of pentamannose oligosaccharides in human mononuclear leukocytes by action of swainsonine, an inhibitor of glycoprotein processing. Carbohydr Res. 1993 Oct 4;248:327–337. doi: 10.1016/0008-6215(93)84138-v. [DOI] [PubMed] [Google Scholar]
  18. Kmiécik D., Herman V., Stroop C. J., Michalski J. C., Mir A. M., Labiau O., Verbert A., Cacan R. Catabolism of glycan moieties of lipid intermediates leads to a single Man5GlcNAc oligosaccharide isomer: a study with permeabilized CHO cells. Glycobiology. 1995 Jul;5(5):483–494. doi: 10.1093/glycob/5.5.483. [DOI] [PubMed] [Google Scholar]
  19. Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
  20. Lubas W. A., Spiro R. G. Golgi endo-alpha-D-mannosidase from rat liver, a novel N-linked carbohydrate unit processing enzyme. J Biol Chem. 1987 Mar 15;262(8):3775–3781. [PubMed] [Google Scholar]
  21. Moore S. E., Bauvy C., Codogno P. Endoplasmic reticulum-to-cytosol transport of free polymannose oligosaccharides in permeabilized HepG2 cells. EMBO J. 1995 Dec 1;14(23):6034–6042. doi: 10.1002/j.1460-2075.1995.tb00292.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Moore S. E., Spiro R. G. Intracellular compartmentalization and degradation of free polymannose oligosaccharides released during glycoprotein biosynthesis. J Biol Chem. 1994 Apr 29;269(17):12715–12721. [PubMed] [Google Scholar]
  23. Oku H., Hase S. Studies on the substrate specificity of neutral alpha-mannosidase purified from Japanese quail oviduct by using sugar chains from glycoproteins. J Biochem. 1991 Dec;110(6):982–989. doi: 10.1093/oxfordjournals.jbchem.a123700. [DOI] [PubMed] [Google Scholar]
  24. Oliver G. J., Harrison J., Hemming F. W. The mannosylation of dolichol-diphosphate oligosaccharides in relation to the formation of oligosaccharides and glycoproteins in pig-liver endoplasmic reticulum. Eur J Biochem. 1975 Oct 1;58(1):223–229. doi: 10.1111/j.1432-1033.1975.tb02367.x. [DOI] [PubMed] [Google Scholar]
  25. Pierce R. J., Spik G., Montreuil J. Cytosolic location of an endo-N-acetyl-beta-D-glucosaminidase activity in rat liver and kidney. Biochem J. 1979 Jun 15;180(3):673–676. doi: 10.1042/bj1800673. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Snider M. D., Robbins P. W. Transmembrane organization of protein glycosylation. Mature oligosaccharide-lipid is located on the luminal side of microsomes from Chinese hamster ovary cells. J Biol Chem. 1982 Jun 25;257(12):6796–6801. [PubMed] [Google Scholar]
  27. Snider M. D., Rogers O. C. Transmembrane movement of oligosaccharide-lipids during glycoprotein synthesis. Cell. 1984 Mar;36(3):753–761. doi: 10.1016/0092-8674(84)90355-6. [DOI] [PubMed] [Google Scholar]
  28. Song Z. W., Li S. C., Li Y. T. Absence of endo-beta-N-acetylglucosaminidase activity in the kidneys of sheep, cattle and pig. Biochem J. 1987 Nov 15;248(1):145–149. doi: 10.1042/bj2480145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Spiro M. J., Spiro R. G. Potential regulation of N-glycosylation precursor through oligosaccharide-lipid hydrolase action and glucosyltransferase-glucosidase shuttle. J Biol Chem. 1991 Mar 15;266(8):5311–5317. [PubMed] [Google Scholar]
  30. Stanley P., Caillibot V., Siminovitch L. Selection and characterization of eight phenotypically distinct lines of lectin-resistant Chinese hamster ovary cell. Cell. 1975 Oct;6(2):121–128. doi: 10.1016/0092-8674(75)90002-1. [DOI] [PubMed] [Google Scholar]
  31. Suzuki T., Seko A., Kitajima K., Inoue Y., Inoue S. Purification and enzymatic properties of peptide:N-glycanase from C3H mouse-derived L-929 fibroblast cells. Possible widespread occurrence of post-translational remodification of proteins by N-deglycosylation. J Biol Chem. 1994 Jul 1;269(26):17611–17618. [PubMed] [Google Scholar]
  32. Tulsiani D. R., Touster O. Substrate specificities of rat kidney lysosomal and cytosolic alpha-D-mannosidases and effects of swainsonine suggest a role of the cytosolic enzyme in glycoprotein catabolism. J Biol Chem. 1987 May 15;262(14):6506–6514. [PubMed] [Google Scholar]
  33. Ugalde R. A., Staneloni R. J., Leloir L. F. Microsomal glucosidases acting on the saccharide moiety of the glucose-containing dolichyl diphosphate oligosaccharide. Biochem Biophys Res Commun. 1979 Dec 14;91(3):1174–1181. doi: 10.1016/0006-291x(79)92003-5. [DOI] [PubMed] [Google Scholar]
  34. Villers C., Cacan R., Mir A. M., Labiau O., Verbert A. Release of oligomannoside-type glycans as a marker of the degradation of newly synthesized glycoproteins. Biochem J. 1994 Feb 15;298(Pt 1):135–142. doi: 10.1042/bj2980135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. al Daher S., De Gasperi R., Daniel P., Hirani S., Warren C., Winchester B. Substrate specificity of human liver neutral alpha-mannosidase. Biochem J. 1992 Aug 15;286(Pt 1):47–53. doi: 10.1042/bj2860047. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES