Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):793–803. doi: 10.1042/bj3160793

Expression of Drosophila trpl cRNA in Xenopus laevis oocytes leads to the appearance of a Ca2+ channel activated by Ca2+ and calmodulin, and by guanosine 5'[gamma-thio]triphosphate.

L Lan 1, M J Bawden 1, A M Auld 1, G J Barritt 1
PMCID: PMC1217420  PMID: 8670154

Abstract

The effects of expression of the Drosophila melanogaster Trpl protein, which is thought to encode a putative Ca2+ channel [Phillips, Bull and Kelly (1992) Neuron 8, 631-642], on divalent cation inflow in Xenopus laevis oocytes were investigated. The addition of extracellular Ca2+ ([Ca2+]0) to oocytes injected with trpl cRNA and to mock-injected controls, both loaded with the fluorescent Ca2+ indicator fluo-3, induced a rapid initial and a slower sustained rate of increase in fluorescence, which were designated the initial and sustained rates of Ca2+ inflow respectively. Compared with mock-injected oocytes, trpl-cRNA-injected oocytes exhibited a higher resting cytoplasmic free Ca2+ concentration ([Ca2+]i), and higher initial and sustained rates of Ca2+ inflow in the basal (no agonist) states. The basal rate of Ca2+ inflow in trpl-cRNA-injected oocytes increased with (1) an increase in the time elapsed between injection of trpl cRNA and the measurement of Ca2+ inflow, (2) an increase in the amount of trpl cRNA injected and (3) an increase in [Ca2+]0. Gd3+ inhibited the trpl cRNA-induced basal rate of Ca2+ inflow, with a concentration of approx. 5 microM Gd3+ giving half-maximal inhibition. Expression of trpl cRNA also caused an increase in the basal rate of Mn2+ inflow. The increases in resting [Ca2+]1 and in the basal rate of Ca2+ inflow induced by expression of trpl cRNA were inhibited by the calmodulin inhibitors W13, calmodazolium and peptide (281-309) of (Ca2+ and calmodulin)-dependent protein kinase II. A low concentration of exogenous calmodulin (introduced by microinjection) activated, and a higher concentration inhibited, the trpl cRNA-induced increase in basal rate of Ca2+ inflow. The action of the high concentration of exogenous calmodulin was reversed by W13 and calmodazolium. When rates of Ca2+ inflow in trpl-cRNA-injected oocytes were compared with those in mock-injected oocytes, the guanosine 5'-[beta-thio]diphosphate-stimulated rate was greater, the onset of thapsigargin-stimulated initial rate somewhat delayed and the inositol 1,4,5-trisphosphate-stimulated initial rate markedly inhibited. It is concluded that (1) the divalent cation channel activity of the Drosophila Trpl protein can be detected in Xenopus oocytes: (2) in the environment of the Xenopus oocyte the Trpl channel admits some Mn2+ as well as Ca2+, is activated by cytoplasmic free Ca2+ (through endogenous calmodulin) and by a trimeric GTP-binding regulatory protein, but does not appear to be activated by depletion of Ca2+ in the endoplasmic reticulum; and (3) expression of the Trpl protein inhibits the process by which the release of Ca2+ from intracellular stores activates endogenous store-activated Ca2+ channels.

Full Text

The Full Text of this article is available as a PDF (544.4 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Apodaca G., Enrich C., Mostov K. E. The calmodulin antagonist, W-13, alters transcytosis, recycling, and the morphology of the endocytic pathway in Madin-Darby canine kidney cells. J Biol Chem. 1994 Jul 22;269(29):19005–19013. [PubMed] [Google Scholar]
  2. Berridge M. J. Inositol trisphosphate and calcium signalling. Nature. 1993 Jan 28;361(6410):315–325. doi: 10.1038/361315a0. [DOI] [PubMed] [Google Scholar]
  3. Berven L. A., Barritt G. J. A role for a pertussis toxin-sensitive trimeric G-protein in store-operated Ca2+ inflow in hepatocytes. FEBS Lett. 1994 Jun 13;346(2-3):235–240. doi: 10.1016/0014-5793(94)00481-1. [DOI] [PubMed] [Google Scholar]
  4. Berven L. A., Hughes B. P., Barritt G. J. A slowly ADP-ribosylated pertussis-toxin-sensitive GTP-binding regulatory protein is required for vasopressin-stimulated Ca2+ inflow in hepatocytes. Biochem J. 1994 Apr 15;299(Pt 2):399–407. doi: 10.1042/bj2990399. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bird G. S., Putney J. W., Jr Inhibition of thapsigargin-induced calcium entry by microinjected guanine nucleotide analogues. Evidence for the involvement of a small G-protein in capacitative calcium entry. J Biol Chem. 1993 Oct 15;268(29):21486–21488. [PubMed] [Google Scholar]
  6. Clapham D. E. Calcium signaling. Cell. 1995 Jan 27;80(2):259–268. doi: 10.1016/0092-8674(95)90408-5. [DOI] [PubMed] [Google Scholar]
  7. Crofts J. N., Barritt G. J. The liver cell plasma membrane Ca2+ inflow systems exhibit a broad specificity for divalent metal ions. Biochem J. 1990 Aug 1;269(3):579–587. doi: 10.1042/bj2690579. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Dascal N. The use of Xenopus oocytes for the study of ion channels. CRC Crit Rev Biochem. 1987;22(4):317–387. doi: 10.3109/10409238709086960. [DOI] [PubMed] [Google Scholar]
  9. DeLisle S., Pittet D., Potter B. V., Lew P. D., Welsh M. J. InsP3 and Ins(1,3,4,5)P4 act in synergy to stimulate influx of extracellular Ca2+ in Xenopus oocytes. Am J Physiol. 1992 Jun;262(6 Pt 1):C1456–C1463. doi: 10.1152/ajpcell.1992.262.6.C1456. [DOI] [PubMed] [Google Scholar]
  10. Dong Y., Kunze D. L., Vaca L., Schilling W. P. Ins(1,4,5)P3 activates Drosophila cation channel Trpl in recombinant baculovirus-infected Sf9 insect cells. Am J Physiol. 1995 Nov;269(5 Pt 1):C1332–C1339. doi: 10.1152/ajpcell.1995.269.5.C1332. [DOI] [PubMed] [Google Scholar]
  11. Fasolato C., Hoth M., Penner R. A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem. 1993 Oct 5;268(28):20737–20740. [PubMed] [Google Scholar]
  12. Fasolato C., Innocenti B., Pozzan T. Receptor-activated Ca2+ influx: how many mechanisms for how many channels? Trends Pharmacol Sci. 1994 Mar;15(3):77–83. doi: 10.1016/0165-6147(94)90282-8. [DOI] [PubMed] [Google Scholar]
  13. Fernando K. C., Barritt G. J. Characterisation of the inhibition of the hepatocyte receptor-activated Ca2+ inflow system by gadolinium and SK&F 96365. Biochim Biophys Acta. 1994 Jul 21;1222(3):383–389. doi: 10.1016/0167-4889(94)90044-2. [DOI] [PubMed] [Google Scholar]
  14. Fernando K. C., Barritt G. J. Evidence from studies with hepatocyte suspensions that store-operated Ca2+ inflow requires a pertussis toxin-sensitive trimeric G-protein. Biochem J. 1994 Oct 15;303(Pt 2):351–356. doi: 10.1042/bj3030351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Fitz J. G., Sostman A. H., Middleton J. P. Regulation of cation channels in liver cells by intracellular calcium and protein kinase C. Am J Physiol. 1994 Apr;266(4 Pt 1):G677–G684. doi: 10.1152/ajpgi.1994.266.4.G677. [DOI] [PubMed] [Google Scholar]
  16. Fournier F., Navarre P., Matifat F., Vilbert C., Colin T., Guilbault P., Brule G., Marlot D. Interaction between Ca2+ release from inositol trisphosphate sensitive stores and Ca2+ entry through neuronal Ca2+ channels expressed in Xenopus oocyte. Cell Calcium. 1994 May;15(5):411–422. doi: 10.1016/0143-4160(94)90016-7. [DOI] [PubMed] [Google Scholar]
  17. Gilman A. G. G proteins: transducers of receptor-generated signals. Annu Rev Biochem. 1987;56:615–649. doi: 10.1146/annurev.bi.56.070187.003151. [DOI] [PubMed] [Google Scholar]
  18. Hardie R. C., Minke B. Novel Ca2+ channels underlying transduction in Drosophila photoreceptors: implications for phosphoinositide-mediated Ca2+ mobilization. Trends Neurosci. 1993 Sep;16(9):371–376. doi: 10.1016/0166-2236(93)90095-4. [DOI] [PubMed] [Google Scholar]
  19. Hardie R. C., Minke B. The trp gene is essential for a light-activated Ca2+ channel in Drosophila photoreceptors. Neuron. 1992 Apr;8(4):643–651. doi: 10.1016/0896-6273(92)90086-s. [DOI] [PubMed] [Google Scholar]
  20. Harteneck C., Obukhov A. G., Zobel A., Kalkbrenner F., Schultz G. The Drosophila cation channel trpl expressed in insect Sf9 cells is stimulated by agonists of G-protein-coupled receptors. FEBS Lett. 1995 Jan 30;358(3):297–300. doi: 10.1016/0014-5793(94)01455-a. [DOI] [PubMed] [Google Scholar]
  21. Hoth M., Fasolato C., Penner R. Ion channels and calcium signaling in mast cells. Ann N Y Acad Sci. 1993 Dec 20;707:198–209. doi: 10.1111/j.1749-6632.1993.tb38053.x. [DOI] [PubMed] [Google Scholar]
  22. Hu Y., Schilling W. P. Receptor-mediated activation of recombinant Trpl expressed in Sf9 insect cells. Biochem J. 1995 Jan 15;305(Pt 2):605–611. doi: 10.1042/bj3050605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hu Y., Vaca L., Zhu X., Birnbaumer L., Kunze D. L., Schilling W. P. Appearance of a novel Ca2+ influx pathway in Sf9 insect cells following expression of the transient receptor potential-like (trpl) protein of Drosophila. Biochem Biophys Res Commun. 1994 Jun 15;201(2):1050–1056. doi: 10.1006/bbrc.1994.1808. [DOI] [PubMed] [Google Scholar]
  24. Hughes B. P., Milton S. E., Barritt G. J. Effects of vasopressin and La3+ on plasma-membrane Ca2+ inflow and Ca2+ disposition in isolated hepatocytes. Evidence that vasopressin inhibits Ca2+ disposition. Biochem J. 1986 Sep 15;238(3):793–800. doi: 10.1042/bj2380793. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Irvine R. F. Inositol phosphates and Ca2+ entry: toward a proliferation or a simplification? FASEB J. 1992 Sep;6(12):3085–3091. doi: 10.1096/fasebj.6.12.1325932. [DOI] [PubMed] [Google Scholar]
  26. Jaconi M. E., Lew D. P., Monod A., Krause K. H. The regulation of store-dependent Ca2+ influx in HL-60 granulocytes involves GTP-sensitive elements. J Biol Chem. 1993 Dec 15;268(35):26075–26078. [PubMed] [Google Scholar]
  27. Kao J. P., Harootunian A. T., Tsien R. Y. Photochemically generated cytosolic calcium pulses and their detection by fluo-3. J Biol Chem. 1989 May 15;264(14):8179–8184. [PubMed] [Google Scholar]
  28. Lansman J. B. Blockade of current through single calcium channels by trivalent lanthanide cations. Effect of ionic radius on the rates of ion entry and exit. J Gen Physiol. 1990 Apr;95(4):679–696. doi: 10.1085/jgp.95.4.679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Lupu-Meiri M., Beit-Or A., Christensen S. B., Oron Y. Calcium entry in Xenopus oocytes: effects of inositol trisphosphate, thapsigargin and DMSO. Cell Calcium. 1993 Feb;14(2):101–110. doi: 10.1016/0143-4160(93)90080-p. [DOI] [PubMed] [Google Scholar]
  30. Montell C., Rubin G. M. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989 Apr;2(4):1313–1323. doi: 10.1016/0896-6273(89)90069-x. [DOI] [PubMed] [Google Scholar]
  31. Moriarty T. M., Sealfon S. C., Carty D. J., Roberts J. L., Iyengar R., Landau E. M. Coupling of exogenous receptors to phospholipase C in Xenopus oocytes through pertussis toxin-sensitive and -insensitive pathways. Cross-talk through heterotrimeric G-proteins. J Biol Chem. 1989 Aug 15;264(23):13524–13530. [PubMed] [Google Scholar]
  32. Morris A. P., Frizzell R. A. Ca(2+)-dependent Cl- channels in undifferentiated human colonic cells (HT-29). II. Regulation and rundown. Am J Physiol. 1993 Apr;264(4 Pt 1):C977–C985. doi: 10.1152/ajpcell.1993.264.4.C977. [DOI] [PubMed] [Google Scholar]
  33. Murphy P. M., McDermott D. The guanine nucleotide-binding protein Gs activates a novel calcium transporter in Xenopus oocytes. J Biol Chem. 1992 Jan 15;267(2):883–888. [PubMed] [Google Scholar]
  34. Niggli V., Adunyah E. S., Penniston J. T., Carafoli E. Purified (Ca2+-Mg2+)-ATPase of the erythrocyte membrane. Reconstitution and effect of calmodulin and phospholipids. J Biol Chem. 1981 Jan 10;256(1):395–401. [PubMed] [Google Scholar]
  35. Parekh A. B., Foguet M., Lübbert H., Stühmer W. Ca2+ oscillations and Ca2+ influx in Xenopus oocytes expressing a novel 5-hydroxytryptamine receptor. J Physiol. 1993 Sep;469:653–671. doi: 10.1113/jphysiol.1993.sp019836. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Parekh A. B., Terlau H., Stühmer W. Depletion of InsP3 stores activates a Ca2+ and K+ current by means of a phosphatase and a diffusible messenger. Nature. 1993 Aug 26;364(6440):814–818. doi: 10.1038/364814a0. [DOI] [PubMed] [Google Scholar]
  37. Parker I., Miledi R. Inositol trisphosphate activates a voltage-dependent calcium influx in Xenopus oocytes. Proc R Soc Lond B Biol Sci. 1987 Jun 22;231(1262):27–36. doi: 10.1098/rspb.1987.0033. [DOI] [PubMed] [Google Scholar]
  38. Payne M. E., Fong Y. L., Ono T., Colbran R. J., Kemp B. E., Soderling T. R., Means A. R. Calcium/calmodulin-dependent protein kinase II. Characterization of distinct calmodulin binding and inhibitory domains. J Biol Chem. 1988 May 25;263(15):7190–7195. [PubMed] [Google Scholar]
  39. Petersen C. C., Berridge M. J. G-protein regulation of capacitative calcium entry may be mediated by protein kinases A and C in Xenopus oocytes. Biochem J. 1995 May 1;307(Pt 3):663–668. doi: 10.1042/bj3070663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Petersen C. C., Berridge M. J. The regulation of capacitative calcium entry by calcium and protein kinase C in Xenopus oocytes. J Biol Chem. 1994 Dec 23;269(51):32246–32253. [PubMed] [Google Scholar]
  41. Phillips A. M., Bull A., Kelly L. E. Identification of a Drosophila gene encoding a calmodulin-binding protein with homology to the trp phototransduction gene. Neuron. 1992 Apr;8(4):631–642. doi: 10.1016/0896-6273(92)90085-r. [DOI] [PubMed] [Google Scholar]
  42. Putney J. W., Jr A model for receptor-regulated calcium entry. Cell Calcium. 1986 Feb;7(1):1–12. doi: 10.1016/0143-4160(86)90026-6. [DOI] [PubMed] [Google Scholar]
  43. Putney J. W., Jr, Bird G. S. The inositol phosphate-calcium signaling system in nonexcitable cells. Endocr Rev. 1993 Oct;14(5):610–631. doi: 10.1210/edrv-14-5-610. [DOI] [PubMed] [Google Scholar]
  44. Putney J. W., Jr, Bird G. S. The signal for capacitative calcium entry. Cell. 1993 Oct 22;75(2):199–201. doi: 10.1016/0092-8674(93)80061-i. [DOI] [PubMed] [Google Scholar]
  45. Putney J. W., Jr Excitement about calcium signaling in inexcitable cells. Science. 1993 Oct 29;262(5134):676–678. doi: 10.1126/science.8235587. [DOI] [PubMed] [Google Scholar]
  46. Randriamampita C., Tsien R. Y. Degradation of a calcium influx factor (CIF) can be blocked by phosphatase inhibitors or chelation of Ca2+. J Biol Chem. 1995 Jan 6;270(1):29–32. doi: 10.1074/jbc.270.1.29. [DOI] [PubMed] [Google Scholar]
  47. Randriamampita C., Tsien R. Y. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature. 1993 Aug 26;364(6440):809–814. doi: 10.1038/364809a0. [DOI] [PubMed] [Google Scholar]
  48. Snyder P. M., Krause K. H., Welsh M. J. Inositol trisphosphate isomers, but not inositol 1,3,4,5-tetrakisphosphate, induce calcium influx in Xenopus laevis oocytes. J Biol Chem. 1988 Aug 15;263(23):11048–11051. [PubMed] [Google Scholar]
  49. Thomas D., Hanley M. R. Evaluation of calcium influx factors from stimulated Jurkat T-lymphocytes by microinjection into Xenopus oocytes. J Biol Chem. 1995 Mar 24;270(12):6429–6432. doi: 10.1074/jbc.270.12.6429. [DOI] [PubMed] [Google Scholar]
  50. Toescu E. C., Petersen O. H. Region-specific activity of the plasma membrane Ca2+ pump and delayed activation of Ca2+ entry characterize the polarized, agonist-evoked Ca2+ signals in exocrine cells. J Biol Chem. 1995 Apr 14;270(15):8528–8535. doi: 10.1074/jbc.270.15.8528. [DOI] [PubMed] [Google Scholar]
  51. Vaca L., Sinkins W. G., Hu Y., Kunze D. L., Schilling W. P. Activation of recombinant trp by thapsigargin in Sf9 insect cells. Am J Physiol. 1994 Nov;267(5 Pt 1):C1501–C1505. doi: 10.1152/ajpcell.1994.267.5.C1501. [DOI] [PubMed] [Google Scholar]
  52. Wong F., Schaefer E. L., Roop B. C., LaMendola J. N., Johnson-Seaton D., Shao D. Proper function of the Drosophila trp gene product during pupal development is important for normal visual transduction in the adult. Neuron. 1989 Jul;3(1):81–94. doi: 10.1016/0896-6273(89)90117-7. [DOI] [PubMed] [Google Scholar]
  53. Yim D. L., Opresko L. K., Wiley H. S., Nuccitelli R. Highly polarized EGF receptor tyrosine kinase activity initiates egg activation in Xenopus. Dev Biol. 1994 Mar;162(1):41–55. doi: 10.1006/dbio.1994.1065. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES