Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):805–811. doi: 10.1042/bj3160805

Entry of polyunsaturated fatty acids into the brain: evidence that high-density lipoprotein-induced methylation of phosphatidylethanolamine and phospholipase A2 are involved.

V Magret 1, L Elkhalil 1, F Nazih-Sanderson 1, F Martin 1, J M Bourre 1, J C Fruchart 1, C Delbart 1
PMCID: PMC1217421  PMID: 8670155

Abstract

The conversion of phosphatidylethanolamine (PE) into phosphatidylcholine (PC) by a sequence of three transmethylation reactions is shown to be stimulated by the apolipoprotein E-free subclass of high-density lipoprotein (HDL3) in isolated bovine brain capillary (BBC) membranes, HDL3-induced stimulation of BBC membranes pulsed with [methyl-14C]methionine causes a transient increase in each methylated phospholipid, i.e. phosphatidyl-N-monomethylethanolamine (PMME), phosphatidyl-NN-dimethylethanolamine (PDME) and PC. PC substrate arising from the activation of PE N-methyltransferase (PEMT) is hydrolysed by a phospholipase A2 (PLA2), as demonstrated by the accumulation of lysophosphatidylcholine (lyso-PC). When PE containing [14C]arachidonic acid in the sn-2 position ([14C]PAPE) is incorporated into BBC membranes, HDL3 stimulation induces the formation of PMME, PDME, PC and lyso-PC and the release of [14C]arachidonic acid, which correlates with the previous production of lyso-PC, suggesting that HDL3 stimulates a PLA2 that can release polyunsaturated fatty acids (PUFA). Both PEMT and PLA2 activities depend on a HDL3 concentration in the range 0-50 micrograms/ml and are strictly dependent on HDL3 binding, because HDL3 modified by tetranitromethane is no longer able to bind to specific receptors and to trigger PEMT and PLA2 activation. Moreover, HDL3 prelabelled with [14C]PAPE can stimulate PDME and lyso-PC synthesis in BBC membranes in the presence of S-adenosylmethionine, suggesting that HDL3 can supply BBC membranes in polyunsaturated PE and can activate enzymes involved in PE N-methylation and PUFA release. The results support the hypothesis of a close relationship between HDL3 binding, PE methylation and PUFA release, and suggest that the PC pool arising from PE could be used as a pathway for the supply of PUFA to the brain.

Full Text

The Full Text of this article is available as a PDF (539.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Badiani K., Lu X., Arthur G. Evidence for the regulation of guinea-pig heart microsomal phosphatidylcholine-hydrolysing phospholipase A1 by guanosine 5'-[gamma-thio]triphosphate. Biochem J. 1992 Dec 15;288(Pt 3):965–968. doi: 10.1042/bj2880965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bazzi M. D., Nelsestuen G. L. Interaction of annexin VI with membranes: highly restricted dissipation of clustered phospholipids in membranes containing phosphatidylethanolamine. Biochemistry. 1992 Oct 27;31(42):10406–10413. doi: 10.1021/bi00157a031. [DOI] [PubMed] [Google Scholar]
  3. Bonventre J. V., Koroshetz W. J. Phospholipase A2 (PLA2) activity in gerbil brain: characterization of cytosolic and membrane-associated forms and effects of ischemia and reperfusion on enzymatic activity. J Lipid Mediat. 1993 Mar-Apr;6(1-3):457–471. [PubMed] [Google Scholar]
  4. Bourre J. M., Dumont O., Durand G. Brain phospholipids as dietary source of (n-3) polyunsaturated fatty acids for nervous tissue in the rat. J Neurochem. 1993 Jun;60(6):2018–2028. doi: 10.1111/j.1471-4159.1993.tb03486.x. [DOI] [PubMed] [Google Scholar]
  5. Brendel K., Meezan E., Carlson E. C. Isolated brain microvessels: a purified, metabolically active preparation from bovine cerebral cortex. Science. 1974 Sep 13;185(4155):953–955. doi: 10.1126/science.185.4155.953. [DOI] [PubMed] [Google Scholar]
  6. Brinton E. A., Oram J. F., Chen C. H., Albers J. J., Bierman E. L. Binding of high density lipoprotein to cultured fibroblasts after chemical alteration of apoprotein amino acid residues. J Biol Chem. 1986 Jan 5;261(1):495–503. [PubMed] [Google Scholar]
  7. Chen C. H., Albers J. J. Characterization of proteoliposomes containing apoprotein A-I: a new substrate for the measurement of lecithin: cholesterol acyltransferase activity. J Lipid Res. 1982 Jul;23(5):680–691. [PubMed] [Google Scholar]
  8. Crews F. T., Calderini G., Battistella A., Toffano G. Age dependent changes in the methylation of rat brain phospholipids. Brain Res. 1981 Dec 14;229(1):256–259. doi: 10.1016/0006-8993(81)90767-8. [DOI] [PubMed] [Google Scholar]
  9. Crews F. T., Hirata F., Axelrod J. Identification and properties of methyltransferases that synthesize phosphatidylcholine in rat brain synaptosomes. J Neurochem. 1980 Jun;34(6):1491–1498. doi: 10.1111/j.1471-4159.1980.tb11229.x. [DOI] [PubMed] [Google Scholar]
  10. Crews F. T., Morita Y., McGivney A., Hirata F., Siraganian R. P., Axelrod J. IgE-mediated histamine release in rat basophilic leukemia cells: receptor activation, phospholipid methylation, Ca2+ flux, and release of arachidonic acid. Arch Biochem Biophys. 1981 Dec;212(2):561–571. doi: 10.1016/0003-9861(81)90399-4. [DOI] [PubMed] [Google Scholar]
  11. Crews F. T. Rapid changes in phospholipid metabolism during secretion and receptor activation. Int Rev Neurobiol. 1982;23:141–163. doi: 10.1016/s0074-7742(08)60624-8. [DOI] [PubMed] [Google Scholar]
  12. Elshourbagy N. A., Liao W. S., Mahley R. W., Taylor J. M. Apolipoprotein E mRNA is abundant in the brain and adrenals, as well as in the liver, and is present in other peripheral tissues of rats and marmosets. Proc Natl Acad Sci U S A. 1985 Jan;82(1):203–207. doi: 10.1073/pnas.82.1.203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  14. Gharib A., Rey C., Fonlupt P., Sarda N., Pacheco H. Phospholipid methylase activity, [3H]S-adenosyl-L-homocysteine binding, and S-adenosyl-L-methionine and S-adenosyl-L-homocysteine levels in rat brain during maturation. J Neurochem. 1985 Jul;45(1):32–36. doi: 10.1111/j.1471-4159.1985.tb05470.x. [DOI] [PubMed] [Google Scholar]
  15. Glaser K. B., Mobilio D., Chang J. Y., Senko N. Phospholipase A2 enzymes: regulation and inhibition. Trends Pharmacol Sci. 1993 Mar;14(3):92–98. doi: 10.1016/0165-6147(93)90071-q. [DOI] [PubMed] [Google Scholar]
  16. HAVEL R. J., EDER H. A., BRAGDON J. H. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest. 1955 Sep;34(9):1345–1353. doi: 10.1172/JCI103182. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Hargreaves K. M., Clandinin M. T. Phosphatidylethanolamine methyltransferase: evidence for influence of diet fat on selectivity of substrate for methylation in rat brain synaptic plasma membranes. Biochim Biophys Acta. 1987 Apr 3;918(2):97–105. doi: 10.1016/0005-2760(87)90183-4. [DOI] [PubMed] [Google Scholar]
  18. Hargreaves K., Clandinin M. T. Dietary lipids in relation to postnatal development of the brain. Ups J Med Sci Suppl. 1990;48:79–95. [PubMed] [Google Scholar]
  19. Hashizume K., Kobayashi M., Ichikawa K. Guanosine 5'-triphosphate modulation of S-adenosyl-L-methionine-mediated methylation of phosphatidylethanolamine in rat liver plasma membrane. Biochem Biophys Res Commun. 1983 Jul 18;114(1):425–430. doi: 10.1016/0006-291x(83)91644-3. [DOI] [PubMed] [Google Scholar]
  20. Hirashima Y., Farooqui A. A., Mills J. S., Horrocks L. A. Identification and purification of calcium-independent phospholipase A2 from bovine brain cytosol. J Neurochem. 1992 Aug;59(2):708–714. doi: 10.1111/j.1471-4159.1992.tb09426.x. [DOI] [PubMed] [Google Scholar]
  21. Hirata F., Axelrod J. Phospholipid methylation and biological signal transmission. Science. 1980 Sep 5;209(4461):1082–1090. doi: 10.1126/science.6157192. [DOI] [PubMed] [Google Scholar]
  22. Hirata F., Tallman J. F., Henneberry R. C., Mallorga P., Strittmatter W. J., Axelrod J. Phospholipid methylation: a possible mechanism of signal transduction across biomembranes. Prog Clin Biol Res. 1981;63:383–388. [PubMed] [Google Scholar]
  23. Hoffman D. R., Cornatzer W. E., Duerre J. A. Relationship between tissue levels of S-adenosylmethionine, S-adenylhomocysteine, and transmethylation reactions. Can J Biochem. 1979 Jan;57(1):56–65. doi: 10.1139/o79-007. [DOI] [PubMed] [Google Scholar]
  24. Kelly K. L. Stimulation of adipocyte phospholipid methyltransferase activity by phorbol 12-myristate 13-acetate. Differential regulation of phospholipid methyltransferase and lipolysis. Biochem J. 1987 Feb 1;241(3):917–921. doi: 10.1042/bj2410917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Lakher M. B., Wurtman R. J. Molecular composition of the phosphatidylcholines produced by the phospholipid methylation pathway in rat brain in vivo. Biochem J. 1987 Jun 1;244(2):325–330. doi: 10.1042/bj2440325. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Lands W. E. Biochemistry and physiology of n-3 fatty acids. FASEB J. 1992 May;6(8):2530–2536. doi: 10.1096/fasebj.6.8.1592205. [DOI] [PubMed] [Google Scholar]
  27. Leprohon C. E., Blusztajn J. K., Wurtman R. J. Dopamine stimulation of phosphatidylcholine (lecithin) biosynthesis in rat brain neurons. Proc Natl Acad Sci U S A. 1983 Apr;80(7):2063–2066. doi: 10.1073/pnas.80.7.2063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Lidinsky W. A., Drewes L. R. Characterization of the blood-brain barrier: protein composition of the capillary endothelial cell membrane. J Neurochem. 1983 Nov;41(5):1341–1348. doi: 10.1111/j.1471-4159.1983.tb00831.x. [DOI] [PubMed] [Google Scholar]
  29. Macdonald G., Thompson W. Different selectivities in acylation and methylation pathways of phosphatidylcholine formation in guinea pig and rat livers. Biochim Biophys Acta. 1975 Sep 19;398(3):424–432. doi: 10.1016/0005-2760(75)90193-9. [DOI] [PubMed] [Google Scholar]
  30. Martin-Nizard F., Meresse S., Cecchelli R., Fruchart J. C., Delbart C. Interactions of high-density lipoprotein 3 with brain capillary endothelial cells. Biochim Biophys Acta. 1989 Oct 17;1005(3):201–208. doi: 10.1016/0005-2760(89)90038-6. [DOI] [PubMed] [Google Scholar]
  31. Mayer R. J., Marshall L. A. New insights on mammalian phospholipase A2(s); comparison of arachidonoyl-selective and -nonselective enzymes. FASEB J. 1993 Feb 1;7(2):339–348. doi: 10.1096/fasebj.7.2.8440410. [DOI] [PubMed] [Google Scholar]
  32. Merida I., Mato J. M. Inhibition by insulin of glucagon-dependent phospholipid methyltransferase phosphorylation in rat hepatocytes. Biochim Biophys Acta. 1987 Apr 2;928(1):92–97. doi: 10.1016/0167-4889(87)90089-9. [DOI] [PubMed] [Google Scholar]
  33. Murayama T., Kajiyama Y., Nomura Y. Histamine-stimulated and GTP-binding proteins-mediated phospholipase A2 activation in rabbit platelets. J Biol Chem. 1990 Mar 15;265(8):4290–4295. [PubMed] [Google Scholar]
  34. Méresse S., Dehouck M. P., Delorme P., Bensaïd M., Tauber J. P., Delbart C., Fruchart J. C., Cecchelli R. Bovine brain endothelial cells express tight junctions and monoamine oxidase activity in long-term culture. J Neurochem. 1989 Nov;53(5):1363–1371. doi: 10.1111/j.1471-4159.1989.tb08526.x. [DOI] [PubMed] [Google Scholar]
  35. Niwa Y., Miyachi Y., Sakane T., Kanoh T., Taniguchi S. Methyltransferase and phospholipase A2 activity in the cell membrane of neutrophils and lymphocytes from patients with Behçet's disease, systemic lupus erythematosus, and rheumatoid arthritis. Clin Chim Acta. 1988 May 13;174(1):1–14. doi: 10.1016/0009-8981(88)90362-2. [DOI] [PubMed] [Google Scholar]
  36. Nouvelot A., Delbart C., Bourre J. M. Hepatic metabolism of dietary alpha-linolenic acid in suckling rats, and its possible importance in polyunsaturated fatty acid uptake by the brain. Ann Nutr Metab. 1986;30(5):316–323. doi: 10.1159/000177209. [DOI] [PubMed] [Google Scholar]
  37. Paglin S., Roy R., Polgar P. Characterization of hormonally regulated and particulate-associated phospholipase A2 from bovine endothelial cells. J Biol Chem. 1993 Jun 5;268(16):11697–11702. [PubMed] [Google Scholar]
  38. Pelech S. L., Ozen N., Audubert F., Vance D. E. Regulation of rat liver phosphatidylethanolamine N-methyltransferase by cytosolic factors. Examination of a role for reversible protein phosphorylation. Biochem Cell Biol. 1986 Jun;64(6):565–574. doi: 10.1139/o86-079. [DOI] [PubMed] [Google Scholar]
  39. Pelech S. L., Vance D. E. Regulation of phosphatidylcholine biosynthesis. Biochim Biophys Acta. 1984 Jun 25;779(2):217–251. doi: 10.1016/0304-4157(84)90010-8. [DOI] [PubMed] [Google Scholar]
  40. Ridgway N. D., Vance D. E. Specificity of rat hepatic phosphatidylethanolamine N-methyltransferase for molecular species of diacyl phosphatidylethanolamine. J Biol Chem. 1988 Nov 15;263(32):16856–16863. [PubMed] [Google Scholar]
  41. Roheim P. S., Carey M., Forte T., Vega G. L. Apolipoproteins in human cerebrospinal fluid. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4646–4649. doi: 10.1073/pnas.76.9.4646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Rusiñol A. E., Cui Z., Chen M. H., Vance J. E. A unique mitochondria-associated membrane fraction from rat liver has a high capacity for lipid synthesis and contains pre-Golgi secretory proteins including nascent lipoproteins. J Biol Chem. 1994 Nov 4;269(44):27494–27502. [PubMed] [Google Scholar]
  43. Sweatt J. D., Connolly T. M., Cragoe E. J., Limbird L. E. Evidence that Na+/H+ exchange regulates receptor-mediated phospholipase A2 activation in human platelets. J Biol Chem. 1986 Jul 5;261(19):8667–8673. [PubMed] [Google Scholar]
  44. Tacconi M., Wurtman R. J. Phosphatidylcholine produced in rat synaptosomes by N-methylation is enriched in polyunsaturated fatty acids. Proc Natl Acad Sci U S A. 1985 Jul;82(14):4828–4831. doi: 10.1073/pnas.82.14.4828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Villalba M., Pajares M. A., Renart M. F., Mato J. M. Protein kinase C catalyses the phosphorylation and activation of rat liver phospholipid methyltransferase. Biochem J. 1987 Feb 1;241(3):911–916. doi: 10.1042/bj2410911. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Yoshihara Y., Yamaji M., Kawasaki M., Watanabe Y. Ontogeny of cytosolic phospholipase A2 activity in rat brain. Biochem Biophys Res Commun. 1992 May 29;185(1):350–355. doi: 10.1016/s0006-291x(05)80992-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES