Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):833–839. doi: 10.1042/bj3160833

Leishmania mexicana p12cks1, a homologue of fission yeast p13suc1, associates with a stage-regulated histone H1 kinase.

J C Mottram 1, K M Grant 1
PMCID: PMC1217425  PMID: 8670159

Abstract

We have isolated a Leishmania mexicana homologue of the fission yeast suc1 gene using PCR with oligonucleotides designed to conserved regions of cdc2 kinase subunits (cks). The product of cks1 is a 12 kDa polypeptide, which has 70% identity with human p9cks1 and 44% identity with fission yeast p13suc1.p12cks1 was detected in the three life-cycle stages of L. mexicana by immunoblotting. Recombinant p12cks1 (p12cks1his) bound to agarose beads was used as a matrix to affinity-select histone H1 kinase complexes from Leishmania, yeast and bovine extracts. Immunoblotting showed that yeast and bovine cdc2 kinase bound to p12cks1his, thus demonstrating functional homology between L. mexicana p12cks1 and yeast p13suc1. Histone H1 kinase activity was found at a high level in the proliferative promastigote and amastigote forms of L. mexicana, but at a low level in the non-dividing metacyclic form. These activities are likely to be the same as the leishmanial p13suc1 binding kinase (SBCRK) described previously [Mottram, Kinnaird, Shiels, Tait and Barry (1993) J. Biol. Chem. 268, 21044-21051]. A distinct cdc2-related kinase, L. mexicana CRK1, was also found to associate with p12cks1his but affinity-depletion experiments showed that CRK1 was not responsible for the histone H1 kinase activity associating with p12cks1his in promastigote cell extracts. The finding that p12cks1 associates with at least two cdc2-related kinases, SBCRK and CRK1, is consistent with the presence of a large gene family of cdc2-related kinases in trypanosomatids, a situation thought to be more similar to higher eukaryotes than yeast.

Full Text

The Full Text of this article is available as a PDF (478.1 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Affranchino J. L., González S. A., Pays E. Isolation of a mitotic-like cyclin homologue from the protozoan Trypanosoma brucei. Gene. 1993 Sep 30;132(1):75–82. doi: 10.1016/0378-1119(93)90516-6. [DOI] [PubMed] [Google Scholar]
  2. Arvai A. S., Bourne Y., Hickey M. J., Tainer J. A. Crystal structure of the human cell cycle protein CksHs1: single domain fold with similarity to kinase N-lobe domain. J Mol Biol. 1995 Jun 23;249(5):835–842. doi: 10.1006/jmbi.1995.0341. [DOI] [PubMed] [Google Scholar]
  3. Azzi L., Meijer L., Ostvold A. C., Lew J., Wang J. H. Purification of a 15-kDa cdk4- and cdk5-binding protein. J Biol Chem. 1994 May 6;269(18):13279–13288. [PubMed] [Google Scholar]
  4. Bates P. A. Complete developmental cycle of Leishmania mexicana in axenic culture. Parasitology. 1994 Jan;108(Pt 1):1–9. doi: 10.1017/s0031182000078458. [DOI] [PubMed] [Google Scholar]
  5. Birck C., Raynaud-Messina B., Samama J. P. Oligomerization state in solution of the cell cycle regulators p13suc1 from the fission yeast and p9cksphy from the myxomycete Physarum, two members of the cks family. FEBS Lett. 1995 Apr 17;363(1-2):145–150. doi: 10.1016/0014-5793(95)00300-x. [DOI] [PubMed] [Google Scholar]
  6. Bourne Y., Arvai A. S., Bernstein S. L., Watson M. H., Reed S. I., Endicott J. E., Noble M. E., Johnson L. N., Tainer J. A. Crystal structure of the cell cycle-regulatory protein suc1 reveals a beta-hinge conformational switch. Proc Natl Acad Sci U S A. 1995 Oct 24;92(22):10232–10236. doi: 10.1073/pnas.92.22.10232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Brizuela L., Draetta G., Beach D. p13suc1 acts in the fission yeast cell division cycle as a component of the p34cdc2 protein kinase. EMBO J. 1987 Nov;6(11):3507–3514. doi: 10.1002/j.1460-2075.1987.tb02676.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Brown L., Hines J. C., Ray D. S. The Crithidia fasciculata CRK gene encodes a novel cdc2-related protein containing large inserts between highly conserved domains. Nucleic Acids Res. 1992 Oct 25;20(20):5451–5456. doi: 10.1093/nar/20.20.5451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Colas P., Serras F., Van Loon A. E. Microinjection of suc1 transcripts delays the cell cycle clock in Patella vulgata embryos. Int J Dev Biol. 1993 Dec;37(4):589–594. [PubMed] [Google Scholar]
  10. Devault A., Martinez A. M., Fesquet D., Labbé J. C., Morin N., Tassan J. P., Nigg E. A., Cavadore J. C., Dorée M. MAT1 ('menage à trois') a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. EMBO J. 1995 Oct 16;14(20):5027–5036. doi: 10.1002/j.1460-2075.1995.tb00185.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Draetta G., Beach D. Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement. Cell. 1988 Jul 1;54(1):17–26. doi: 10.1016/0092-8674(88)90175-4. [DOI] [PubMed] [Google Scholar]
  13. Ducommun B., Brambilla P., Félix M. A., Franza B. R., Jr, Karsenti E., Draetta G. cdc2 phosphorylation is required for its interaction with cyclin. EMBO J. 1991 Nov;10(11):3311–3319. doi: 10.1002/j.1460-2075.1991.tb04895.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Dunphy W. G., Brizuela L., Beach D., Newport J. The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis. Cell. 1988 Jul 29;54(3):423–431. doi: 10.1016/0092-8674(88)90205-x. [DOI] [PubMed] [Google Scholar]
  15. Dunphy W. G., Newport J. W. Fission yeast p13 blocks mitotic activation and tyrosine dephosphorylation of the Xenopus cdc2 protein kinase. Cell. 1989 Jul 14;58(1):181–191. doi: 10.1016/0092-8674(89)90414-5. [DOI] [PubMed] [Google Scholar]
  16. Endicott J. A., Noble M. E., Garman E. F., Brown N., Rasmussen B., Nurse P., Johnson L. N. The crystal structure of p13suc1, a p34cdc2-interacting cell cycle control protein. EMBO J. 1995 Mar 1;14(5):1004–1014. doi: 10.1002/j.1460-2075.1995.tb07081.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Endicott J. A., Nurse P. The cell cycle and suc1: from structure to function? Structure. 1995 Apr 15;3(4):321–325. doi: 10.1016/s0969-2126(01)00162-9. [DOI] [PubMed] [Google Scholar]
  18. Hadwiger J. A., Wittenberg C., Mendenhall M. D., Reed S. I. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc1+ gene, encodes a subunit of the Cdc28 protein kinase complex. Mol Cell Biol. 1989 May;9(5):2034–2041. doi: 10.1128/mcb.9.5.2034. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Hannon G. J., Demetrick D., Beach D. Isolation of the Rb-related p130 through its interaction with CDK2 and cyclins. Genes Dev. 1993 Dec;7(12A):2378–2391. doi: 10.1101/gad.7.12a.2378. [DOI] [PubMed] [Google Scholar]
  20. Harper J. W., Adami G. R., Wei N., Keyomarsi K., Elledge S. J. The p21 Cdk-interacting protein Cip1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell. 1993 Nov 19;75(4):805–816. doi: 10.1016/0092-8674(93)90499-g. [DOI] [PubMed] [Google Scholar]
  21. Hayles J., Aves S., Nurse P. suc1 is an essential gene involved in both the cell cycle and growth in fission yeast. EMBO J. 1986 Dec 1;5(12):3373–3379. doi: 10.1002/j.1460-2075.1986.tb04653.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hayles J., Beach D., Durkacz B., Nurse P. The fission yeast cell cycle control gene cdc2: isolation of a sequence suc1 that suppresses cdc2 mutant function. Mol Gen Genet. 1986 Feb;202(2):291–293. doi: 10.1007/BF00331653. [DOI] [PubMed] [Google Scholar]
  23. Hindley J., Phear G., Stein M., Beach D. Sucl+ encodes a predicted 13-kilodalton protein that is essential for cell viability and is directly involved in the division cycle of Schizosaccharomyces pombe. Mol Cell Biol. 1987 Jan;7(1):504–511. doi: 10.1128/mcb.7.1.504. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Meyerson M., Enders G. H., Wu C. L., Su L. K., Gorka C., Nelson C., Harlow E., Tsai L. H. A family of human cdc2-related protein kinases. EMBO J. 1992 Aug;11(8):2909–2917. doi: 10.1002/j.1460-2075.1992.tb05360.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Moreno S., Hayles J., Nurse P. Regulation of p34cdc2 protein kinase during mitosis. Cell. 1989 Jul 28;58(2):361–372. doi: 10.1016/0092-8674(89)90850-7. [DOI] [PubMed] [Google Scholar]
  26. Morla A. O., Draetta G., Beach D., Wang J. Y. Reversible tyrosine phosphorylation of cdc2: dephosphorylation accompanies activation during entry into mitosis. Cell. 1989 Jul 14;58(1):193–203. doi: 10.1016/0092-8674(89)90415-7. [DOI] [PubMed] [Google Scholar]
  27. Mottram J. C., Coombs G. H. Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol. 1985 Jun;59(3):265–274. doi: 10.1016/0014-4894(85)90081-5. [DOI] [PubMed] [Google Scholar]
  28. Mottram J. C., Kinnaird J. H., Shiels B. R., Tait A., Barry J. D. A novel CDC2-related protein kinase from Leishmania mexicana, LmmCRK1, is post-translationally regulated during the life cycle. J Biol Chem. 1993 Oct 5;268(28):21044–21052. [PubMed] [Google Scholar]
  29. Mottram J. C., Smith G. A family of trypanosome cdc2-related protein kinases. Gene. 1995 Aug 30;162(1):147–152. doi: 10.1016/0378-1119(95)00350-f. [DOI] [PubMed] [Google Scholar]
  30. Mottram J. C. cdc2-related protein kinases and cell cycle control in trypanosomatids. Parasitol Today. 1994 Jul;10(7):253–257. doi: 10.1016/0169-4758(94)90136-8. [DOI] [PubMed] [Google Scholar]
  31. Parge H. E., Arvai A. S., Murtari D. J., Reed S. I., Tainer J. A. Human CksHs2 atomic structure: a role for its hexameric assembly in cell cycle control. Science. 1993 Oct 15;262(5132):387–395. doi: 10.1126/science.8211159. [DOI] [PubMed] [Google Scholar]
  32. Peter M., Herskowitz I. Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell. 1994 Oct 21;79(2):181–184. doi: 10.1016/0092-8674(94)90186-4. [DOI] [PubMed] [Google Scholar]
  33. Pines J. Cyclins and cyclin-dependent kinases: a biochemical view. Biochem J. 1995 Jun 15;308(Pt 3):697–711. doi: 10.1042/bj3080697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pondaven P., Meijer L., Beach D. Activation of M-phase-specific histone H1 kinase by modification of the phosphorylation of its p34cdc2 and cyclin components. Genes Dev. 1990 Jan;4(1):9–17. doi: 10.1101/gad.4.1.9. [DOI] [PubMed] [Google Scholar]
  35. Reed S. I., Hadwiger J. A., Lörincz A. T. Protein kinase activity associated with the product of the yeast cell division cycle gene CDC28. Proc Natl Acad Sci U S A. 1985 Jun;82(12):4055–4059. doi: 10.1073/pnas.82.12.4055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Richardson H. E., Stueland C. S., Thomas J., Russell P., Reed S. I. Human cDNAs encoding homologs of the small p34Cdc28/Cdc2-associated protein of Saccharomyces cerevisiae and Schizosaccharomyces pombe. Genes Dev. 1990 Aug;4(8):1332–1344. doi: 10.1101/gad.4.8.1332. [DOI] [PubMed] [Google Scholar]
  37. Shiels B., Kinnaird J., McKellar S., Dickson J., Miled L. B., Melrose R., Brown D., Tait A. Disruption of synchrony between parasite growth and host cell division is a determinant of differentiation to the merozoite in Theileria annulata. J Cell Sci. 1992 Jan;101(Pt 1):99–107. doi: 10.1242/jcs.101.1.99. [DOI] [PubMed] [Google Scholar]
  38. Simanis V., Nurse P. The cell cycle control gene cdc2+ of fission yeast encodes a protein kinase potentially regulated by phosphorylation. Cell. 1986 Apr 25;45(2):261–268. doi: 10.1016/0092-8674(86)90390-9. [DOI] [PubMed] [Google Scholar]
  39. Sogin M. L. Early evolution and the origin of eukaryotes. Curr Opin Genet Dev. 1991 Dec;1(4):457–463. doi: 10.1016/s0959-437x(05)80192-3. [DOI] [PubMed] [Google Scholar]
  40. Solomon M. J., Glotzer M., Lee T. H., Philippe M., Kirschner M. W. Cyclin activation of p34cdc2. Cell. 1990 Nov 30;63(5):1013–1024. doi: 10.1016/0092-8674(90)90504-8. [DOI] [PubMed] [Google Scholar]
  41. Takahashi M., Amin N., Grant P., Pant H. C. P13suc1 associates with a cdc2-like kinase in a multimeric cytoskeletal complex in squid axoplasm. J Neurosci. 1995 Sep;15(9):6222–6229. doi: 10.1523/JNEUROSCI.15-09-06222.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Tang L., Pelech S. L., Berger J. D. A cdc2-like kinase associated with commitment to division in Paramecium tetraurelia. J Eukaryot Microbiol. 1994 Jul-Aug;41(4):381–387. doi: 10.1111/j.1550-7408.1994.tb06093.x. [DOI] [PubMed] [Google Scholar]
  43. Tassan J. P., Jaquenoud M., Léopold P., Schultz S. J., Nigg E. A. Identification of human cyclin-dependent kinase 8, a putative protein kinase partner for cyclin C. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8871–8875. doi: 10.1073/pnas.92.19.8871. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES