Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):859–864. doi: 10.1042/bj3160859

Active synthesis of C24:5, n-3 fatty acid in retina.

N P Rotstein 1, G L Pennacchiotti 1, H Sprecher 1, M I Aveldaño 1
PMCID: PMC1217429  PMID: 8670163

Abstract

The formation of 14C-labelled long-chain and very-long-chain (n-3) pentaenoic and hexaenoic fatty acids was studied in bovine retina by following the metabolism of. [14C]-docosapentaenoate [C22:5, n-3 fatty acid (22:5 n-3)], [14C]-docosahexaenoate (22:6 n-3), and [14C]acetate. With similar amounts of 22:5 n-3 and 22:6 n-3 as substrates, the former was actively transformed into 24:5 n-3, whereas the latter was virtually unmodified. Labelled 24:5, 26:5, 24:6 and 22:6 were formed from [1-14C]22:5 n-3, showing that pentaenoic fatty acids including 24:5 n-3 can be elongated and desaturated within the retina. When retinal microsomes were incubated with [1-14C]22:5 n-3, 24:5 n-3 was the only fatty acid formed. In retinas incubated with [14C]acetate, 24:5 n-3 was the most highly labelled fatty acid among the polyenes synthesized, 24:6 n-3 being a minor product. Such selectivity in the elongation of two fatty acids identical in length, 22:5 n-3 and 22:6 n-3, despite the fact that 22:5 is a minor and 22:6 a major fatty acid constituent of retina, suggests that the active formation of 24:5 n-3 plays a key role in n-3 polyunsaturated fatty acid (PUFA) metabolism. This compound might give rise to even longer pentaenes via elongation, and to the major PUFAs of retina, 22:6 n-3, by 6-desaturation and chain shortening. Of all retinal lipids, a minor component, triacylglycerol (TG), incorporated the largest amounts of [14C]22:5 and 22:6. TG also concentrated most of the [14C]24:5 formed in retina, whether from [14C]22:5 n-3 or from [14C]acetate, suggesting an important role for this lipid in supporting PUFA metabolism and the synthesis of 22:6 n-3.

Full Text

The Full Text of this article is available as a PDF (354.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMES A., 3rd, HASTINGS A. B. Studies on water and electrolytes in nervous tissue. I. Rabbit retina: methods and interpretation of data. J Neurophysiol. 1956 May;19(3):201–212. doi: 10.1152/jn.1956.19.3.201. [DOI] [PubMed] [Google Scholar]
  2. Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
  3. Aveldaño de Caldironi M. I., Giusto N. M., Bazàn N. G. Polyunsaturated fatty acids of the retina. Prog Lipid Res. 1981;20:49–57. doi: 10.1016/0163-7827(81)90013-8. [DOI] [PubMed] [Google Scholar]
  4. Aveldaño M. I., Pasquare de Garcia S. J., Bazán N. G. Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J Lipid Res. 1983 May;24(5):628–638. [PubMed] [Google Scholar]
  5. Aveldaño M. I., Rotstein N. P., Vermouth N. T. Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem J. 1992 Apr 1;283(Pt 1):235–241. doi: 10.1042/bj2830235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Aveldaño M. I., Sprecher H. Synthesis of hydroxy fatty acids from 4, 7, 10, 13, 16, 19-[1-14C] docosahexaenoic acid by human platelets. J Biol Chem. 1983 Aug 10;258(15):9339–9343. [PubMed] [Google Scholar]
  7. Aveldaño M. I., Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem. 1987 Jan 25;262(3):1180–1186. [PubMed] [Google Scholar]
  8. BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
  9. Careaga M. M., Sprecher H. Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosapentaenoic acid by human platelets. J Biol Chem. 1984 Dec 10;259(23):14413–14417. [PubMed] [Google Scholar]
  10. Christiansen E. N., Rørtveit T., Norum K. R., Thomassen M. S. Fatty-acid chain elongation in rat small intestine. Biochem J. 1986 Jul 1;237(1):293–295. doi: 10.1042/bj2370293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  12. Hiltunen J. K., Kärki T., Hassinen I. E., Osmundsen H. beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem. 1986 Dec 15;261(35):16484–16493. [PubMed] [Google Scholar]
  13. Hovik R., Osmundsen H. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J. 1987 Nov 1;247(3):531–535. doi: 10.1042/bj2470531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Rotstein N. P., Aveldaño M. I. Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)) docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim Biophys Acta. 1987 Sep 25;921(2):221–234. doi: 10.1016/0005-2760(87)90022-1. [DOI] [PubMed] [Google Scholar]
  15. Rotstein N. P., Aveldaño M. I. Synthesis of very long chain (up to 36 carbon) tetra, penta and hexaenoic fatty acids in retina. Biochem J. 1988 Jan 1;249(1):191–200. doi: 10.1042/bj2490191. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
  17. Voss A., Reinhart M., Sankarappa S., Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem. 1991 Oct 25;266(30):19995–20000. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES