Abstract
The formation of 14C-labelled long-chain and very-long-chain (n-3) pentaenoic and hexaenoic fatty acids was studied in bovine retina by following the metabolism of. [14C]-docosapentaenoate [C22:5, n-3 fatty acid (22:5 n-3)], [14C]-docosahexaenoate (22:6 n-3), and [14C]acetate. With similar amounts of 22:5 n-3 and 22:6 n-3 as substrates, the former was actively transformed into 24:5 n-3, whereas the latter was virtually unmodified. Labelled 24:5, 26:5, 24:6 and 22:6 were formed from [1-14C]22:5 n-3, showing that pentaenoic fatty acids including 24:5 n-3 can be elongated and desaturated within the retina. When retinal microsomes were incubated with [1-14C]22:5 n-3, 24:5 n-3 was the only fatty acid formed. In retinas incubated with [14C]acetate, 24:5 n-3 was the most highly labelled fatty acid among the polyenes synthesized, 24:6 n-3 being a minor product. Such selectivity in the elongation of two fatty acids identical in length, 22:5 n-3 and 22:6 n-3, despite the fact that 22:5 is a minor and 22:6 a major fatty acid constituent of retina, suggests that the active formation of 24:5 n-3 plays a key role in n-3 polyunsaturated fatty acid (PUFA) metabolism. This compound might give rise to even longer pentaenes via elongation, and to the major PUFAs of retina, 22:6 n-3, by 6-desaturation and chain shortening. Of all retinal lipids, a minor component, triacylglycerol (TG), incorporated the largest amounts of [14C]22:5 and 22:6. TG also concentrated most of the [14C]24:5 formed in retina, whether from [14C]22:5 n-3 or from [14C]acetate, suggesting an important role for this lipid in supporting PUFA metabolism and the synthesis of 22:6 n-3.
Full Text
The Full Text of this article is available as a PDF (354.8 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- AMES A., 3rd, HASTINGS A. B. Studies on water and electrolytes in nervous tissue. I. Rabbit retina: methods and interpretation of data. J Neurophysiol. 1956 May;19(3):201–212. doi: 10.1152/jn.1956.19.3.201. [DOI] [PubMed] [Google Scholar]
- Arvidson G. A. Structural and metabolic heterogeneity of rat liver glycerophosphatides. Eur J Biochem. 1968 May;4(4):478–486. doi: 10.1111/j.1432-1033.1968.tb00237.x. [DOI] [PubMed] [Google Scholar]
- Aveldaño de Caldironi M. I., Giusto N. M., Bazàn N. G. Polyunsaturated fatty acids of the retina. Prog Lipid Res. 1981;20:49–57. doi: 10.1016/0163-7827(81)90013-8. [DOI] [PubMed] [Google Scholar]
- Aveldaño M. I., Pasquare de Garcia S. J., Bazán N. G. Biosynthesis of molecular species of inositol, choline, serine, and ethanolamine glycerophospholipids in the bovine retina. J Lipid Res. 1983 May;24(5):628–638. [PubMed] [Google Scholar]
- Aveldaño M. I., Rotstein N. P., Vermouth N. T. Lipid remodelling during epididymal maturation of rat spermatozoa. Enrichment in plasmenylcholines containing long-chain polyenoic fatty acids of the n-9 series. Biochem J. 1992 Apr 1;283(Pt 1):235–241. doi: 10.1042/bj2830235. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Aveldaño M. I., Sprecher H. Synthesis of hydroxy fatty acids from 4, 7, 10, 13, 16, 19-[1-14C] docosahexaenoic acid by human platelets. J Biol Chem. 1983 Aug 10;258(15):9339–9343. [PubMed] [Google Scholar]
- Aveldaño M. I., Sprecher H. Very long chain (C24 to C36) polyenoic fatty acids of the n-3 and n-6 series in dipolyunsaturated phosphatidylcholines from bovine retina. J Biol Chem. 1987 Jan 25;262(3):1180–1186. [PubMed] [Google Scholar]
- BLIGH E. G., DYER W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959 Aug;37(8):911–917. doi: 10.1139/o59-099. [DOI] [PubMed] [Google Scholar]
- Careaga M. M., Sprecher H. Synthesis of two hydroxy fatty acids from 7,10,13,16,19-docosapentaenoic acid by human platelets. J Biol Chem. 1984 Dec 10;259(23):14413–14417. [PubMed] [Google Scholar]
- Christiansen E. N., Rørtveit T., Norum K. R., Thomassen M. S. Fatty-acid chain elongation in rat small intestine. Biochem J. 1986 Jul 1;237(1):293–295. doi: 10.1042/bj2370293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
- Hiltunen J. K., Kärki T., Hassinen I. E., Osmundsen H. beta-Oxidation of polyunsaturated fatty acids by rat liver peroxisomes. A role for 2,4-dienoyl-coenzyme A reductase in peroxisomal beta-oxidation. J Biol Chem. 1986 Dec 15;261(35):16484–16493. [PubMed] [Google Scholar]
- Hovik R., Osmundsen H. Peroxisomal beta-oxidation of long-chain fatty acids possessing different extents of unsaturation. Biochem J. 1987 Nov 1;247(3):531–535. doi: 10.1042/bj2470531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rotstein N. P., Aveldaño M. I. Labeling of lipids of retina subcellular fractions by [1-14C]eicosatetraenoate (20:4(n-6)) docosapentaenoate (22:5(n-3)) and docosahexaenoate (22:6(n-3)). Biochim Biophys Acta. 1987 Sep 25;921(2):221–234. doi: 10.1016/0005-2760(87)90022-1. [DOI] [PubMed] [Google Scholar]
- Rotstein N. P., Aveldaño M. I. Synthesis of very long chain (up to 36 carbon) tetra, penta and hexaenoic fatty acids in retina. Biochem J. 1988 Jan 1;249(1):191–200. doi: 10.1042/bj2490191. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rouser G., Fkeischer S., Yamamoto A. Two dimensional then layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids. 1970 May;5(5):494–496. doi: 10.1007/BF02531316. [DOI] [PubMed] [Google Scholar]
- Voss A., Reinhart M., Sankarappa S., Sprecher H. The metabolism of 7,10,13,16,19-docosapentaenoic acid to 4,7,10,13,16,19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. J Biol Chem. 1991 Oct 25;266(30):19995–20000. [PubMed] [Google Scholar]