Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):873–877. doi: 10.1042/bj3160873

Mechanism of bile salt-induced mucin secretion by cultured dog gallbladder epithelial cells.

J H Klinkspoor 1, G N Tytgat 1, S P Lee 1, A K Groen 1
PMCID: PMC1217431  PMID: 8670165

Abstract

1. Hypersecretion of gallbladder mucin has been proposed to be a pathogenic factor in cholesterol gallstone formation. Using cultured gallbladder epithelial cells, we demonstrated that bile salts regulate mucin secretion by the gallbladder epithelium. In the present study we have investigated whether established second messenger pathways are involved in bile salt-induced mucin secretion. 2. The effect of activators and inhibitors on mucin secretion was studied by measuring the secretion of [3H]N-acetyl-D-glucosamine-labelled glycoproteins. Intracellular cAMP content of the cells was measured using a radioimmunoassay. 3. Incubation of the cells with 10 mM taurocholate did not increase the intracellular cAMP content (25.7 versus control 22.8 pmol of cAMP/mg of protein). No stimulation of mucin secretion was observed after incubation with 1-100 microM concentrations of the calcium ionophores ionomycin and A23187. The stimulatory effect of 10 mM tauroursodeoxycholate (TUDC) on mucin secretion could not be inhibited by the addition of EDTA. Activation of protein kinase C (PKC) by 1 microgram/ml phorbol 12-myristate 13-acetate (PMA) caused an increase in mucin secretion (342% versus control 100%), comparable with the effect of 40 mM TUDC. The effect of 10 ng/ml PMA could partially be inhibited by a concentration of 2 microM of the PKC inhibitor staurosporin. Staurosporin had no inhibitory effect on mucin secretion induced by TUDC. 4. In gallbladder epithelial cells bile salts do not stimulate mucin secretion via one of the classical signal transduction pathways. We hypothesize that bile salts act on mucin secretion via a direct interaction with the apical membrane.

Full Text

The Full Text of this article is available as a PDF (260.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AMADOR E., DORFMAN L. E., WACKER W. E. SERUM LACTIC DEHYDROGENASE ACTIVITY: AN ANALYTICAL ASSESSMENT OF CURRENT ASSAYS. Clin Chem. 1963 Aug;12:391–399. [PubMed] [Google Scholar]
  2. Beuers U., Nathanson M. H., Isales C. M., Boyer J. L. Tauroursodeoxycholic acid stimulates hepatocellular exocytosis and mobilizes extracellular Ca++ mechanisms defective in cholestasis. J Clin Invest. 1993 Dec;92(6):2984–2993. doi: 10.1172/JCI116921. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bouchier I. A., Cooperband S. R., el-Kodsi B. M. Mucous substances and viscosity of normal and pathological human bile. Gastroenterology. 1965 Oct;49(4):343–353. [PubMed] [Google Scholar]
  4. Brown B. L., Albano J. D., Ekins R. P., Sgherzi A. M. A simple and sensitive saturation assay method for the measurement of adenosine 3':5'-cyclic monophosphate. Biochem J. 1971 Feb;121(3):561–562. doi: 10.1042/bj1210561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Bruck R., Haddad P., Graf J., Boyer J. L. Regulatory volume decrease stimulates bile flow, bile acid excretion, and exocytosis in isolated perfused rat liver. Am J Physiol. 1992 May;262(5 Pt 1):G806–G812. doi: 10.1152/ajpgi.1992.262.5.G806. [DOI] [PubMed] [Google Scholar]
  6. Busch N., Tokumo H., Holzbach R. T. A sensitive method for determination of cholesterol growth using model solutions of supersaturated bile. J Lipid Res. 1990 Oct;31(10):1903–1909. [PubMed] [Google Scholar]
  7. Coleman R. Bile salts and biliary lipids. Biochem Soc Trans. 1987 Dec;15 (Suppl):68S–80S. [PubMed] [Google Scholar]
  8. Coleman R., Lowe P. J., Billington D. Membrane lipid composition and susceptibility to bile salt damage. Biochim Biophys Acta. 1980 Jun 20;599(1):294–300. doi: 10.1016/0005-2736(80)90075-9. [DOI] [PubMed] [Google Scholar]
  9. Freston J. W., Bouchier I. A., Newman J. Biliary mucous substances in dihydrocholesterol-induced cholelithiasis. Gastroenterology. 1969 Dec;57(6):670–678. [PubMed] [Google Scholar]
  10. Gallinger S., Taylor R. D., Harvey P. R., Petrunka C. N., Strasberg S. M. Effect of mucous glycoprotein on nucleation time of human bile. Gastroenterology. 1985 Sep;89(3):648–658. doi: 10.1016/0016-5085(85)90464-0. [DOI] [PubMed] [Google Scholar]
  11. Hayakawa T., Ng O. C., Ma A., Boyer J. L., Cheng O. Taurocholate stimulates transcytotic vesicular pathways labeled by horseradish peroxidase in the isolated perfused rat liver. Gastroenterology. 1990 Jul;99(1):216–228. doi: 10.1016/0016-5085(90)91251-z. [DOI] [PubMed] [Google Scholar]
  12. Hillaire S., Boucher E., Calmus Y., Gane P., Ballet F., Franco D., Moukthar M., Poupon R. Effects of bile acids and cholestasis on major histocompatibility complex class I in human and rat hepatocytes. Gastroenterology. 1994 Sep;107(3):781–788. doi: 10.1016/0016-5085(94)90127-9. [DOI] [PubMed] [Google Scholar]
  13. Hirano F., Tanaka H., Makino Y., Okamoto K., Inaba M., Miura T., Makino I. Regulation of the major histocompatibility complex class I mRNA expression by bile acids in cultured human hepatoma cells. Biochem Biophys Res Commun. 1995 Mar 28;208(3):935–942. doi: 10.1006/bbrc.1995.1424. [DOI] [PubMed] [Google Scholar]
  14. Huang X. P., Fan X. T., Desjeux J. F., Castagna M. Bile acids, non-phorbol-ester-type tumor promoters, stimulate the phosphorylation of protein kinase C substrates in human platelets and colon cell line HT29. Int J Cancer. 1992 Sep 30;52(3):444–450. doi: 10.1002/ijc.2910520319. [DOI] [PubMed] [Google Scholar]
  15. Klinkspoor J. H., Kuver R., Savard C. E., Oda D., Azzouz H., Tytgat G. N., Groen A. K., Lee S. P. Model bile and bile salts accelerate mucin secretion by cultured dog gallbladder epithelial cells. Gastroenterology. 1995 Jul;109(1):264–274. doi: 10.1016/0016-5085(95)90293-7. [DOI] [PubMed] [Google Scholar]
  16. Kuver R., Savard C., Oda D., Lee S. P. PGE generates intracellular cAMP and accelerates mucin secretion by cultured dog gallbladder epithelial cells. Am J Physiol. 1994 Dec;267(6 Pt 1):G998–1003. doi: 10.1152/ajpgi.1994.267.6.G998. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lee S. P., LaMont J. T., Carey M. C. Role of gallbladder mucus hypersecretion in the evolution of cholesterol gallstones. J Clin Invest. 1981 Jun;67(6):1712–1723. doi: 10.1172/JCI110209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Lee S. P., Lim T. H., Scott A. J. Carbohydrate moieties of glycoproteins in human hepatic and gall-bladder bile, gall-bladder mucosa and gall stones. Clin Sci (Lond) 1979 Jan;56(6):533–538. doi: 10.1042/cs0560533. [DOI] [PubMed] [Google Scholar]
  20. Lee T. J., Smith B. F. Bovine gallbladder mucin promotes cholesterol crystal nucleation from cholesterol-transporting vesicles in supersaturated model bile. J Lipid Res. 1989 Apr;30(4):491–498. [PubMed] [Google Scholar]
  21. Levy P. F., Smith B. F., LaMont J. T. Human gallbladder mucin accelerates nucleation of cholesterol in artificial bile. Gastroenterology. 1984 Aug;87(2):270–275. [PubMed] [Google Scholar]
  22. Lowe P. J., Coleman R. Membrane fluidity and bile salt damage. Biochim Biophys Acta. 1981 Jan 8;640(1):55–65. doi: 10.1016/0005-2736(81)90531-9. [DOI] [PubMed] [Google Scholar]
  23. Malet P. F., Locke C. L., Trotman B. W., Soloway R. D. The calcium ionophore A23187 stimulates glycoprotein secretion by the guinea pig gallbladder. Hepatology. 1986 Jul-Aug;6(4):569–573. doi: 10.1002/hep.1840060404. [DOI] [PubMed] [Google Scholar]
  24. Oda D., Lee S. P., Hayashi A. Long-term culture and partial characterization of dog gallbladder epithelial cells. Lab Invest. 1991 May;64(5):682–692. [PubMed] [Google Scholar]
  25. Pongracz J., Clark P., Neoptolemos J. P., Lord J. M. Expression of protein kinase C isoenzymes in colorectal cancer tissue and their differential activation by different bile acids. Int J Cancer. 1995 Mar 29;61(1):35–39. doi: 10.1002/ijc.2910610107. [DOI] [PubMed] [Google Scholar]
  26. Smith B. F. Human gallbladder mucin binds biliary lipids and promotes cholesterol crystal nucleation in model bile. J Lipid Res. 1987 Sep;28(9):1088–1097. [PubMed] [Google Scholar]
  27. Smith B. F., LaMont J. T. Identification of gallbladder mucin-bilirubin complex in human cholesterol gallstone matrix. Effects of reducing agents on in vitro dissolution of matrix and intact gallstones. J Clin Invest. 1985 Aug;76(2):439–445. doi: 10.1172/JCI111991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Stravitz R. T., Vlahcevic Z. R., Gurley E. C., Hylemon P. B. Repression of cholesterol 7 alpha-hydroxylase transcription by bile acids is mediated through protein kinase C in primary cultures of rat hepatocytes. J Lipid Res. 1995 Jun;36(6):1359–1369. [PubMed] [Google Scholar]
  29. Tamaoki T., Nomoto H., Takahashi I., Kato Y., Morimoto M., Tomita F. Staurosporine, a potent inhibitor of phospholipid/Ca++dependent protein kinase. Biochem Biophys Res Commun. 1986 Mar 13;135(2):397–402. doi: 10.1016/0006-291x(86)90008-2. [DOI] [PubMed] [Google Scholar]
  30. Zimber A., Chedeville A., Gespach C., Abita J. P. Inhibition of proliferation and induction of monocytic differentiation on HL60 human promyelocytic leukemia cells treated with bile acids in vitro. Int J Cancer. 1994 Oct 1;59(1):71–77. doi: 10.1002/ijc.2910590115. [DOI] [PubMed] [Google Scholar]
  31. Zimniak P., Little J. M., Radominska A., Oelberg D. G., Anwer M. S., Lester R. Taurine-conjugated bile acids act as Ca2+ ionophores. Biochemistry. 1991 Sep 3;30(35):8598–8604. doi: 10.1021/bi00099a015. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES