Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jun 15;316(Pt 3):953–958. doi: 10.1042/bj3160953

Processing of chromogranins in chromaffin cell culture: effects of reserpine and alpha-methyl-p-tyrosine.

M Wolkersdorfer 1, A Laslop 1, C Lazure 1, R Fischer-Colbrie 1, H Winkler 1
PMCID: PMC1217441  PMID: 8670175

Abstract

Bovine chromaffin cell cultures were treated with either reserpine or alpha-methyl-p-tyrosine for up to 10 days. Afterwards the cells were harvested and the degree of proteolytic processing of secretogranin II, chromogranin A and chromogranin B was determined by immunoblotting and HPLC followed by RIA. There was a significant increase in the proteolysis of all three chromogranins after 4-6 days in the presence of reserpine. The small peptides formed in the presence of reserpine in vitro are also produced in vivo. A similar effect was observed with alpha-methyl-p-tyrosine, an inhibitor of tyrosine hydroxylase, but the response took up to 10 days to develop. Both drugs decreased catecholamine levels but reserpine was more effective, reaching a high degree of depletion after 4 days. In addition, experiments in vitro indicate that low millimolar amounts of either adrenaline (IC50 5.2 mM) or noradrenaline (IC50 2.4 mM) can significantly impair the proteolytic activity of recombinant murine prohormone convertase 1 when assayed with synthetic fluorogenic and/or peptidyl substrates. We conclude that a lowering of catecholamine levels in chromaffin granules leads to a concomitant increase in proteolytic processing of all secretory peptides. Apparently within chromaffin granules the endoproteases are inhibited by catecholamines and thus their removal leads to increased proteolysis.

Full Text

The Full Text of this article is available as a PDF (560.8 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams M., Boarder M. R. Secretion of [Met]enkephalyl-Arg6-Phe7-related peptides and catecholamines from bovine adrenal chromaffin cells: modification by changes in cyclic AMP and by treatment with reserpine. J Neurochem. 1987 Jul;49(1):208–215. doi: 10.1111/j.1471-4159.1987.tb03416.x. [DOI] [PubMed] [Google Scholar]
  2. Arden S. D., Rutherford N. G., Guest P. C., Curry W. J., Bailyes E. M., Johnston C. F., Hutton J. C. The post-translational processing of chromogranin A in the pancreatic islet: involvement of the eukaryote subtilisin PC2. Biochem J. 1994 Mar 15;298(Pt 3):521–528. doi: 10.1042/bj2980521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bauer J. W., Fischer-Colbrie R. Primary structure of bovine chromogranin B deduced from cDNA sequence. Biochim Biophys Acta. 1991 May 2;1089(1):124–126. doi: 10.1016/0167-4781(91)90094-3. [DOI] [PubMed] [Google Scholar]
  4. Breslin M. B., Lindberg I., Benjannet S., Mathis J. P., Lazure C., Seidah N. G. Differential processing of proenkephalin by prohormone convertases 1(3) and 2 and furin. J Biol Chem. 1993 Dec 25;268(36):27084–27093. [PubMed] [Google Scholar]
  5. Christie D. L., Batchelor D. C., Palmer D. J. Identification of kex2-related proteases in chromaffin granules by partial amino acid sequence analysis. J Biol Chem. 1991 Aug 25;266(24):15679–15683. [PubMed] [Google Scholar]
  6. Dittié A. S., Tooze S. A. Characterization of the endopeptidase PC2 activity towards secretogranin II in stably transfected PC12 cells. Biochem J. 1995 Sep 15;310(Pt 3):777–787. doi: 10.1042/bj3100777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Egger C., Kirchmair R., Kapelari S., Fischer-Colbrie R., Hogue-Angeletti R., Winkler H. Bovine posterior pituitary: presence of p65 (synaptotagmin), PC1, PC2 and secretoneurin in large dense core vesicles. Neuroendocrinology. 1994 Feb;59(2):169–175. doi: 10.1159/000126655. [DOI] [PubMed] [Google Scholar]
  8. Eiden L. E., Eskay R. L., Scott J., Pollard H., Hotchkiss A. J. Primary cultures of bovine chromaffin cells synthesize and secrete vasoactive intestinal polypeptide (VIP). Life Sci. 1983 Aug 22;33(8):687–693. doi: 10.1016/0024-3205(83)90772-5. [DOI] [PubMed] [Google Scholar]
  9. Eiden L. E., Giraud P., Affolter H. U., Herbert E., Hotchkiss A. J. Alternative modes of enkephalin biosynthesis regulation by reserpine and cyclic AMP in cultured chromaffin cells. Proc Natl Acad Sci U S A. 1984 Jul;81(13):3949–3953. doi: 10.1073/pnas.81.13.3949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Eiden L. E., Zamir N. Metorphamide levels in chromaffin cells increase after treatment with reserpine. J Neurochem. 1986 May;46(5):1651–1654. doi: 10.1111/j.1471-4159.1986.tb01790.x. [DOI] [PubMed] [Google Scholar]
  11. Fischer-Colbrie R., Frischenschlager I. Immunological characterization of secretory proteins of chromaffin granules: chromogranins A, chromogranins B, and enkephalin-containing peptides. J Neurochem. 1985 Jun;44(6):1854–1861. doi: 10.1111/j.1471-4159.1985.tb07179.x. [DOI] [PubMed] [Google Scholar]
  12. Fischer-Colbrie R., Laslop A., Kirchmair R. Secretogranin II: molecular properties, regulation of biosynthesis and processing to the neuropeptide secretoneurin. Prog Neurobiol. 1995 May;46(1):49–70. doi: 10.1016/0301-0082(94)00060-u. [DOI] [PubMed] [Google Scholar]
  13. Henry J. P., Scherman D. Radioligands of the vesicular monoamine transporter and their use as markers of monoamine storage vesicles. Biochem Pharmacol. 1989 Aug 1;38(15):2395–2404. doi: 10.1016/0006-2952(89)90082-8. [DOI] [PubMed] [Google Scholar]
  14. Hoflehner J., Eder U., Laslop A., Seidah N. G., Fischer-Colbrie R., Winkler H. Processing of secretogranin II by prohormone convertases: importance of PC1 in generation of secretoneurin. FEBS Lett. 1995 Mar 6;360(3):294–298. doi: 10.1016/0014-5793(95)00127-u. [DOI] [PubMed] [Google Scholar]
  15. Jean F., Basak A., DiMaio J., Seidah N. G., Lazure C. An internally quenched fluorogenic substrate of prohormone convertase 1 and furin leads to a potent prohormone convertase inhibitor. Biochem J. 1995 May 1;307(Pt 3):689–695. doi: 10.1042/bj3070689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Jean F., Basak A., Rondeau N., Benjannet S., Hendy G. N., Seidah N. G., Chrétien M., Lazure C. Enzymic characterization of murine and human prohormone convertase-1 (mPC1 and hPC1) expressed in mammalian GH4C1 cells. Biochem J. 1993 Jun 15;292(Pt 3):891–900. doi: 10.1042/bj2920891. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Kirchmair R., Gee P., Hogue-Angeletti R., Laslop A., Fischer-Colbrie R., Winkler H. Immunological characterization of the endoproteases PC1 and PC2 in adrenal chromaffin granules and in the pituitary gland. FEBS Lett. 1992 Feb 10;297(3):302–305. doi: 10.1016/0014-5793(92)80560-4. [DOI] [PubMed] [Google Scholar]
  18. Kirchmair R., Hogue-Angeletti R., Gutierrez J., Fischer-Colbrie R., Winkler H. Secretoneurin--a neuropeptide generated in brain, adrenal medulla and other endocrine tissues by proteolytic processing of secretogranin II (chromogranin C). Neuroscience. 1993 Mar;53(2):359–365. doi: 10.1016/0306-4522(93)90200-y. [DOI] [PubMed] [Google Scholar]
  19. Kirchmair R., Leitner B., Fischer-Colbrie R., Marksteiner J., Hogue-Angeletti R., Winkler H. Large variations in the proteolytic formation of a chromogranin A-derived peptide (GE-25) in neuroendocrine tissues. Biochem J. 1995 Aug 15;310(Pt 1):331–336. doi: 10.1042/bj3100331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Lindberg I. Reserpine-induced alterations in the processing of proenkephalin in cultured chromaffin cells. Increased amidation. J Biol Chem. 1986 Dec 15;261(35):16317–16322. [PubMed] [Google Scholar]
  21. Patzak A., Winkler H. Exocytotic exposure and recycling of membrane antigens of chromaffin granules: ultrastructural evaluation after immunolabeling. J Cell Biol. 1986 Feb;102(2):510–515. doi: 10.1083/jcb.102.2.510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SPECTOR S., SJOERDSMA A., UDENFRIEND S. BLOCKADE OF ENDOGENOUS NOREPINEPHRINE SYNTHESIS BY ALPHA-METHYL-TYROSINE, AN INHIBITOR OF TYROSINE HYDROXYLASE. J Pharmacol Exp Ther. 1965 Jan;147:86–95. [PubMed] [Google Scholar]
  23. Schuldiner S. A molecular glimpse of vesicular monoamine transporters. J Neurochem. 1994 Jun;62(6):2067–2078. doi: 10.1046/j.1471-4159.1994.62062067.x. [DOI] [PubMed] [Google Scholar]
  24. Seidah N. G., Gaspar L., Mion P., Marcinkiewicz M., Mbikay M., Chrétien M. cDNA sequence of two distinct pituitary proteins homologous to Kex2 and furin gene products: tissue-specific mRNAs encoding candidates for pro-hormone processing proteinases. DNA Cell Biol. 1990 Jul-Aug;9(6):415–424. doi: 10.1089/dna.1990.9.415. [DOI] [PubMed] [Google Scholar]
  25. Smeekens S. P., Avruch A. S., LaMendola J., Chan S. J., Steiner D. F. Identification of a cDNA encoding a second putative prohormone convertase related to PC2 in AtT20 cells and islets of Langerhans. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):340–344. doi: 10.1073/pnas.88.2.340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sperk G., Berger M., Hörtnagl H., Hornykiewicz O. Kainic acid-induced changes of serotonin and dopamine metabolism in the striatum and substantia nigra of the rat. Eur J Pharmacol. 1981 Sep 24;74(4):279–286. doi: 10.1016/0014-2999(81)90046-7. [DOI] [PubMed] [Google Scholar]
  27. Tatemoto K., Efendić S., Mutt V., Makk G., Feistner G. J., Barchas J. D. Pancreastatin, a novel pancreatic peptide that inhibits insulin secretion. Nature. 1986 Dec 4;324(6096):476–478. doi: 10.1038/324476a0. [DOI] [PubMed] [Google Scholar]
  28. Tezapsidis N., Parish D. C. Characterization of a metalloprotease from ovine chromaffin granules which cleaves a proenkephalin fragment (BAM12P) at a single arginine residue. Biochem J. 1994 Jul 15;301(Pt 2):607–614. doi: 10.1042/bj3010607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Watkinson A., Jönsson A. C., Davison M., Young J., Lee C. M., Moore S., Dockray G. J. Heterogeneity of chromogranin A-derived peptides in bovine gut, pancreas and adrenal medulla. Biochem J. 1991 Jun 1;276(Pt 2):471–479. doi: 10.1042/bj2760471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Watkinson A., Robinson I. Reserpine-induced processing of chromogranin A in cultured bovine adrenal chromaffin cells. J Neurochem. 1992 Mar;58(3):877–883. doi: 10.1111/j.1471-4159.1992.tb09338.x. [DOI] [PubMed] [Google Scholar]
  31. Wilson S. P., Abou-Donia M. M., Chang K. J., Viveros O. H. Reserpine increases opiate-like peptide content and tyrosine hydroxylase activity in adrenal medullary chromaffin cells in culture. Neuroscience. 1981;6(1):71–79. doi: 10.1016/0306-4522(81)90244-x. [DOI] [PubMed] [Google Scholar]
  32. Wilson S. P., Chang K. J., Viveros O. H. Synthesis of enkephalins by adrenal medullary chromaffin cells: reserpine increases incorporation of radiolabeled amino acids. Proc Natl Acad Sci U S A. 1980 Jul;77(7):4364–4368. doi: 10.1073/pnas.77.7.4364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Wilson S. P. Processing of proenkephalin in adrenal chromaffin cells. J Neurochem. 1991 Sep;57(3):876–881. doi: 10.1111/j.1471-4159.1991.tb08232.x. [DOI] [PubMed] [Google Scholar]
  34. Winkler H., Fischer-Colbrie R. The chromogranins A and B: the first 25 years and future perspectives. Neuroscience. 1992 Aug;49(3):497–528. doi: 10.1016/0306-4522(92)90222-N. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Winkler H. The biogenesis of adrenal chromaffin granules. Neuroscience. 1977;2(5):657–683. doi: 10.1016/0306-4522(77)90022-7. [DOI] [PubMed] [Google Scholar]
  36. Winkler H. The composition of adrenal chromaffin granules: an assessment of controversial results. Neuroscience. 1976;1(2):65–80. doi: 10.1016/0306-4522(76)90001-4. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES