Abstract
Anandamide (arachidonoylethanolamide, AnNH) has been recently proposed as the endogenous ligand at the brain cannabinoid receptor CB1. Two alternative pathways have been suggested for the biosynthesis of this putative mediator in the central nervous system. Here we present data (1) substantiating further the mechanism by which AnNH is produced by phospholipase D (PLD)-catalysed hydrolysis of N-arachidonoylphosphatidylethanolamine in mouse neuroblastoma N18TG2 cells, and (2) suggesting for the first time that AnNH is biosynthesized via the same mechanism in a non-neuronal cell line, mouse J774 macrophages, together with other acylethanolamides and is possibly involved in the control of the immune/inflammatory response. Lipids from both neuroblastoma cells and J774 macrophages were shown to contain a family of N-acylphosphatidylethanolamines (N-aPEs), including the possible precursor of AnNH, N-arachidonoyl-PE. Treatment with exogenous PLD, but not with exogenous phospholipase A2 and ethanolamine, resulted in the production of a series of acylethanolamides (AEs), including AnNH, from both cell types. The formation of AEs was accompanied by a decrease in the levels of the corresponding N-aPEs. Enzymically active homogenates from either neuroblastoma cells or J774 macrophages were shown to convert synthetic N-[3H]arachidonoyl-PE into [3H]AnNH, thus suggesting that in both cells an enzyme is present which is capable of catalysing the hydrolysis of N-aPE(s) to the corresponding AE(s). Finally, as previously shown in central neurons, on stimulation with ionomycin, J774 macrophages also produced a mixture of AEs including AnNH and palmitoylethanolamide, which has been proposed as the preferential endogenous ligand at the peripheral cannabinoid receptor CB2 and, consequently, as a possible down-modulator of mast cells. On the basis of this as well as previous findings it is now possible to hypothesize for AnNH and palmitoylethanolamide, co-synthesized by macrophages, a role as peripheral mediators with multiple actions on blood cell function.
Full Text
The Full Text of this article is available as a PDF (712.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Burstein S. H., Hunter S. A. Stimulation of anandamide biosynthesis in N-18TG2 neuroblastoma cells by delta 9-tetrahydrocannabinol (THC). Biochem Pharmacol. 1995 Mar 15;49(6):855–858. doi: 10.1016/0006-2952(94)00538-w. [DOI] [PubMed] [Google Scholar]
- Burstein S., Budrow J., Debatis M., Hunter S. A., Subramanian A. Phospholipase participation in cannabinoid-induced release of free arachidonic acid. Biochem Pharmacol. 1994 Sep 15;48(6):1253–1264. doi: 10.1016/0006-2952(94)90163-5. [DOI] [PubMed] [Google Scholar]
- De Petrocellis L., Orlando P., Di Marzo V. Anandamide, an endogenous cannabinomimetic substance, modulates rat brain protein kinase C in vitro. Biochem Mol Biol Int. 1995 Aug;36(6):1127–1133. [PubMed] [Google Scholar]
- Desarnaud F., Cadas H., Piomelli D. Anandamide amidohydrolase activity in rat brain microsomes. Identification and partial characterization. J Biol Chem. 1995 Mar 17;270(11):6030–6035. doi: 10.1074/jbc.270.11.6030. [DOI] [PubMed] [Google Scholar]
- Deutsch D. G., Chin S. A. Enzymatic synthesis and degradation of anandamide, a cannabinoid receptor agonist. Biochem Pharmacol. 1993 Sep 1;46(5):791–796. doi: 10.1016/0006-2952(93)90486-g. [DOI] [PubMed] [Google Scholar]
- Devane W. A., Axelrod J. Enzymatic synthesis of anandamide, an endogenous ligand for the cannabinoid receptor, by brain membranes. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6698–6701. doi: 10.1073/pnas.91.14.6698. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devane W. A., Hanus L., Breuer A., Pertwee R. G., Stevenson L. A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992 Dec 18;258(5090):1946–1949. doi: 10.1126/science.1470919. [DOI] [PubMed] [Google Scholar]
- Devane W. A. New dawn of cannabinoid pharmacology. Trends Pharmacol Sci. 1994 Feb;15(2):40–41. doi: 10.1016/0165-6147(94)90106-6. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Fontana A. Anandamide, an endogenous cannabinomimetic eicosanoid: 'killing two birds with one stone'. Prostaglandins Leukot Essent Fatty Acids. 1995 Jul;53(1):1–11. doi: 10.1016/0952-3278(95)90077-2. [DOI] [PubMed] [Google Scholar]
- Di Marzo V., Fontana A., Cadas H., Schinelli S., Cimino G., Schwartz J. C., Piomelli D. Formation and inactivation of endogenous cannabinoid anandamide in central neurons. Nature. 1994 Dec 15;372(6507):686–691. doi: 10.1038/372686a0. [DOI] [PubMed] [Google Scholar]
- Facci L., Dal Toso R., Romanello S., Buriani A., Skaper S. D., Leon A. Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide and palmitoylethanolamide. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3376–3380. doi: 10.1073/pnas.92.8.3376. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fontana A., Di Marzo V., Cadas H., Piomelli D. Analysis of anandamide, an endogenous cannabinoid substance, and of other natural N-acylethanolamines. Prostaglandins Leukot Essent Fatty Acids. 1995 Oct;53(4):301–308. doi: 10.1016/0952-3278(95)90130-2. [DOI] [PubMed] [Google Scholar]
- Fride E., Mechoulam R. Pharmacological activity of the cannabinoid receptor agonist, anandamide, a brain constituent. Eur J Pharmacol. 1993 Feb 9;231(2):313–314. doi: 10.1016/0014-2999(93)90468-w. [DOI] [PubMed] [Google Scholar]
- Gulaya N. M., Melnik A. A., Balkov D. I., Volkov G. L., Vysotskiy M. V., Vaskovsky V. E. The effect of long-chain N-acylethanolamines on some membrane-associated functions of neuroblastoma C1300 N18 cells. Biochim Biophys Acta. 1993 Nov 7;1152(2):280–288. doi: 10.1016/0005-2736(93)90259-3. [DOI] [PubMed] [Google Scholar]
- Gulaya N. M., Volkov G. L., Klimashevsky V. M., Govseeva N. N., Melnik A. A. Changes in lipid composition of neuroblastoma C1300 N18 cell during differentiation. Neuroscience. 1989;30(1):153–164. doi: 10.1016/0306-4522(89)90361-8. [DOI] [PubMed] [Google Scholar]
- Hanus L., Gopher A., Almog S., Mechoulam R. Two new unsaturated fatty acid ethanolamides in brain that bind to the cannabinoid receptor. J Med Chem. 1993 Oct 1;36(20):3032–3034. doi: 10.1021/jm00072a026. [DOI] [PubMed] [Google Scholar]
- Iversen L. Pharmacology. Endogenous cannabinoids. Nature. 1994 Dec 15;372(6507):619–619. doi: 10.1038/372619a0. [DOI] [PubMed] [Google Scholar]
- Koutek B., Prestwich G. D., Howlett A. C., Chin S. A., Salehani D., Akhavan N., Deutsch D. G. Inhibitors of arachidonoyl ethanolamide hydrolysis. J Biol Chem. 1994 Sep 16;269(37):22937–22940. [PubMed] [Google Scholar]
- Kruszka K. K., Gross R. W. The ATP- and CoA-independent synthesis of arachidonoylethanolamide. A novel mechanism underlying the synthesis of the endogenous ligand of the cannabinoid receptor. J Biol Chem. 1994 May 20;269(20):14345–14348. [PubMed] [Google Scholar]
- Maurelli S., Bisogno T., De Petrocellis L., Di Luccia A., Marino G., Di Marzo V. Two novel classes of neuroactive fatty acid amides are substrates for mouse neuroblastoma 'anandamide amidohydrolase'. FEBS Lett. 1995 Dec 11;377(1):82–86. doi: 10.1016/0014-5793(95)01311-3. [DOI] [PubMed] [Google Scholar]
- Natarajan V., Schmid P. C., Reddy P. V., Schmid H. H. Catabolism of N-acylethanolamine phospholipids by dog brain preparations. J Neurochem. 1984 Jun;42(6):1613–1619. doi: 10.1111/j.1471-4159.1984.tb12750.x. [DOI] [PubMed] [Google Scholar]
- Schmid H. H., Schmid P. C., Natarajan V. N-acylated glycerophospholipids and their derivatives. Prog Lipid Res. 1990;29(1):1–43. doi: 10.1016/0163-7827(90)90004-5. [DOI] [PubMed] [Google Scholar]
- Schwarz H., Blanco F. J., Lotz M. Anadamide, an endogenous cannabinoid receptor agonist inhibits lymphocyte proliferation and induces apoptosis. J Neuroimmunol. 1994 Nov;55(1):107–115. doi: 10.1016/0165-5728(94)90152-x. [DOI] [PubMed] [Google Scholar]
- Ueda N., Kurahashi Y., Yamamoto S., Tokunaga T. Partial purification and characterization of the porcine brain enzyme hydrolyzing and synthesizing anandamide. J Biol Chem. 1995 Oct 6;270(40):23823–23827. doi: 10.1074/jbc.270.40.23823. [DOI] [PubMed] [Google Scholar]
- Venance L., Piomelli D., Glowinski J., Giaume C. Inhibition by anandamide of gap junctions and intercellular calcium signalling in striatal astrocytes. Nature. 1995 Aug 17;376(6541):590–594. doi: 10.1038/376590a0. [DOI] [PubMed] [Google Scholar]