Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):1–11. doi: 10.1042/bj3170001

The denaturation and degradation of stable enzymes at high temperatures.

R M Daniel 1, M Dines 1, H H Petach 1
PMCID: PMC1217448  PMID: 8694749

Abstract

Now that enzymes are available that are stable above 100 degrees C it is possible to investigate conformational stability at this temperature, and also the effect of high-temperature degradative reactions in functioning enzymes and the inter-relationship between degradation and denaturation. The conformational stability of proteins depends upon stabilizing forces arising from a large number of weak interactions, which are opposed by an almost equally large destabilizing force due mostly to conformational entropy. The difference between these, the net free energy of stabilization, is relatively small, equivalent to a few interactions. The enhanced stability of very stable proteins can be achieved by an additional stabilizing force which is again equivalent to only a few stabilizing interactions. There is currently no strong evidence that any particular interaction (e.g. hydrogen bonds, hydrophobic interactions) plays a more important role in proteins that are stable at 100 degrees C than in those stable at 50 degrees C, or that the structures of very stable proteins are systematically different from those of less stable proteins. The major degradative mechanisms are deamidation of asparagine and glutamine, and succinamide formation at aspartate and glutamate leading to peptide bond hydrolysis. In addition to being temperature-dependent, these reactions are strongly dependent upon the conformational freedom of the susceptible amino acid residues. Evidence is accumulating which suggests that even at 100 degrees C deamidation and succinamide formation proceed slowly or not at all in conformationally intact (native) enzymes. Whether this is the case at higher temperatures is not yet clear, so it is not known whether denaturation of degradation will set the upper limit of stability for enzymes.

Full Text

The Full Text of this article is available as a PDF (589.0 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abdel-Meguid S. S., Shieh H. S., Smith W. W., Dayringer H. E., Violand B. N., Bentle L. A. Three-dimensional structure of a genetically engineered variant of porcine growth hormone. Proc Natl Acad Sci U S A. 1987 Sep;84(18):6434–6437. doi: 10.1073/pnas.84.18.6434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams M. W. Enzymes and proteins from organisms that grow near and above 100 degrees C. Annu Rev Microbiol. 1993;47:627–658. doi: 10.1146/annurev.mi.47.100193.003211. [DOI] [PubMed] [Google Scholar]
  3. Ahern T. J., Casal J. I., Petsko G. A., Klibanov A. M. Control of oligomeric enzyme thermostability by protein engineering. Proc Natl Acad Sci U S A. 1987 Feb;84(3):675–679. doi: 10.1073/pnas.84.3.675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Ahern T. J., Klibanov A. M. Analysis of processes causing thermal inactivation of enzymes. Methods Biochem Anal. 1988;33:91–127. doi: 10.1002/9780470110546.ch3. [DOI] [PubMed] [Google Scholar]
  5. Ahern T. J., Klibanov A. M. The mechanisms of irreversible enzyme inactivation at 100C. Science. 1985 Jun 14;228(4705):1280–1284. doi: 10.1126/science.4001942. [DOI] [PubMed] [Google Scholar]
  6. Alber T. Mutational effects on protein stability. Annu Rev Biochem. 1989;58:765–798. doi: 10.1146/annurev.bi.58.070189.004001. [DOI] [PubMed] [Google Scholar]
  7. Alber T., Wozniak J. A. A genetic screen for mutations that increase the thermal stability of phage T4 lysozyme. Proc Natl Acad Sci U S A. 1985 Feb;82(3):747–750. doi: 10.1073/pnas.82.3.747. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Argos P., Rossman M. G., Grau U. M., Zuber H., Frank G., Tratschin J. D. Thermal stability and protein structure. Biochemistry. 1979 Dec 11;18(25):5698–5703. doi: 10.1021/bi00592a028. [DOI] [PubMed] [Google Scholar]
  9. Artymiuk P. J., Blake C. C., Grace D. E., Oatley S. J., Phillips D. C., Sternberg M. J. Crystallographic studies of the dynamic properties of lysozyme. Nature. 1979 Aug 16;280(5723):563–568. doi: 10.1038/280563a0. [DOI] [PubMed] [Google Scholar]
  10. Babu Y. S., Bugg C. E., Cook W. J. Structure of calmodulin refined at 2.2 A resolution. J Mol Biol. 1988 Nov 5;204(1):191–204. doi: 10.1016/0022-2836(88)90608-0. [DOI] [PubMed] [Google Scholar]
  11. Baldwin E. P., Matthews B. W. Core-packing constraints, hydrophobicity and protein design. Curr Opin Biotechnol. 1994 Aug;5(4):396–402. doi: 10.1016/0958-1669(94)90048-5. [DOI] [PubMed] [Google Scholar]
  12. Bauminger E. R., Cohen S. G., Nowik I., Ofer S., Yariv J. Dynamics of heme iron in crystals of metmyoglobin and deoxymyoglobin. Proc Natl Acad Sci U S A. 1983 Feb;80(3):736–740. doi: 10.1073/pnas.80.3.736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Blake P. R., Park J. B., Zhou Z. H., Hare D. R., Adams M. W., Summers M. F. Solution-state structure by NMR of zinc-substituted rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1508–1521. doi: 10.1002/pro.5560011112. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Bornstein P., Balian G. Cleavage at Asn-Gly bonds with hydroxylamine. Methods Enzymol. 1977;47:132–145. doi: 10.1016/0076-6879(77)47016-2. [DOI] [PubMed] [Google Scholar]
  15. Brennan T. V., Anderson J. W., Jia Z., Waygood E. B., Clarke S. Repair of spontaneously deamidated HPr phosphocarrier protein catalyzed by the L-isoaspartate-(D-aspartate) O-methyltransferase. J Biol Chem. 1994 Oct 7;269(40):24586–24595. [PubMed] [Google Scholar]
  16. Brown S. H., Kelly R. M. Characterization of Amylolytic Enzymes, Having Both alpha-1,4 and alpha-1,6 Hydrolytic Activity, from the Thermophilic Archaea Pyrococcus furiosus and Thermococcus litoralis. Appl Environ Microbiol. 1993 Aug;59(8):2614–2621. doi: 10.1128/aem.59.8.2614-2621.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Bryan P. N., Rollence M. L., Pantoliano M. W., Wood J., Finzel B. C., Gilliland G. L., Howard A. J., Poulos T. L. Proteases of enhanced stability: characterization of a thermostable variant of subtilisin. Proteins. 1986 Dec;1(4):326–334. doi: 10.1002/prot.340010406. [DOI] [PubMed] [Google Scholar]
  18. Böhm G., Jaenicke R. Relevance of sequence statistics for the properties of extremophilic proteins. Int J Pept Protein Res. 1994 Jan;43(1):97–106. doi: 10.1111/j.1399-3011.1994.tb00380.x. [DOI] [PubMed] [Google Scholar]
  19. Clarke S. Propensity for spontaneous succinimide formation from aspartyl and asparaginyl residues in cellular proteins. Int J Pept Protein Res. 1987 Dec;30(6):808–821. doi: 10.1111/j.1399-3011.1987.tb03390.x. [DOI] [PubMed] [Google Scholar]
  20. Coolbear T., Daniel R. M., Morgan H. W. The enzymes from extreme thermophiles: bacterial sources, thermostabilities and industrial relevance. Adv Biochem Eng Biotechnol. 1992;45:57–98. doi: 10.1007/BFb0008756. [DOI] [PubMed] [Google Scholar]
  21. Cowan D. A., Daniel R. M., Morgan H. W. The specific activities of mesophilic and thermophilic proteinases. Int J Biochem. 1987;19(8):741–743. doi: 10.1016/0020-711x(87)90092-9. [DOI] [PubMed] [Google Scholar]
  22. Daniel R. M., Cowan D. A., Morgan H. W., Curran M. P. A correlation between protein thermostability and resistance to proteolysis. Biochem J. 1982 Dec 1;207(3):641–644. doi: 10.1042/bj2070641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dasgupta S., Bell J. A. Design of helix ends. Amino acid preferences, hydrogen bonding and electrostatic interactions. Int J Pept Protein Res. 1993 May;41(5):499–511. [PubMed] [Google Scholar]
  24. Day M. W., Hsu B. T., Joshua-Tor L., Park J. B., Zhou Z. H., Adams M. W., Rees D. C. X-ray crystal structures of the oxidized and reduced forms of the rubredoxin from the marine hyperthermophilic archaebacterium Pyrococcus furiosus. Protein Sci. 1992 Nov;1(11):1494–1507. doi: 10.1002/pro.5560011111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Eijsink V. G., Vriend G., van den Burg B., van der Zee J. R., Veltman O. R., Stulp B. K., Venema G. Introduction of a stabilizing 10 residue beta-hairpin in Bacillus subtilis neutral protease. Protein Eng. 1992 Mar;5(2):157–163. doi: 10.1093/protein/5.2.157. [DOI] [PubMed] [Google Scholar]
  26. Frauenfelder H., Petsko G. A., Tsernoglou D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics. Nature. 1979 Aug 16;280(5723):558–563. doi: 10.1038/280558a0. [DOI] [PubMed] [Google Scholar]
  27. Geiger T., Clarke S. Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide-linked reactions that contribute to protein degradation. J Biol Chem. 1987 Jan 15;262(2):785–794. [PubMed] [Google Scholar]
  28. George-Nascimento C., Lowenson J., Borissenko M., Calderón M., Medina-Selby A., Kuo J., Clarke S., Randolph A. Replacement of a labile aspartyl residue increases the stability of human epidermal growth factor. Biochemistry. 1990 Oct 16;29(41):9584–9591. doi: 10.1021/bi00493a012. [DOI] [PubMed] [Google Scholar]
  29. Hartmann H., Parak F., Steigemann W., Petsko G. A., Ponzi D. R., Frauenfelder H. Conformational substates in a protein: structure and dynamics of metmyoglobin at 80 K. Proc Natl Acad Sci U S A. 1982 Aug;79(16):4967–4971. doi: 10.1073/pnas.79.16.4967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Hensel R., Jakob I., Scheer H., Lottspeich F. Proteins from hyperthermophilic archaea: stability towards covalent modification of the peptide chain. Biochem Soc Symp. 1992;58:127–133. [PubMed] [Google Scholar]
  31. Huber R., Bennett W. S., Jr Functional significance of flexibility in proteins. Biopolymers. 1983 Jan;22(1):261–279. doi: 10.1002/bip.360220136. [DOI] [PubMed] [Google Scholar]
  32. Inglis A. S. Cleavage at aspartic acid. Methods Enzymol. 1983;91:324–332. doi: 10.1016/s0076-6879(83)91030-3. [DOI] [PubMed] [Google Scholar]
  33. Jaenicke R. Protein stability and molecular adaptation to extreme conditions. Eur J Biochem. 1991 Dec 18;202(3):715–728. doi: 10.1111/j.1432-1033.1991.tb16426.x. [DOI] [PubMed] [Google Scholar]
  34. Johnson B. A., Shirokawa J. M., Hancock W. S., Spellman M. W., Basa L. J., Aswad D. W. Formation of isoaspartate at two distinct sites during in vitro aging of human growth hormone. J Biol Chem. 1989 Aug 25;264(24):14262–14271. [PubMed] [Google Scholar]
  35. Kossiakoff A. A. Tertiary structure is a principal determinant to protein deamidation. Science. 1988 Apr 8;240(4849):191–194. doi: 10.1126/science.3353715. [DOI] [PubMed] [Google Scholar]
  36. Kuroki R., Kawakita S., Nakamura H., Yutani K. Entropic stabilization of a mutant human lysozyme induced by calcium binding. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):6803–6807. doi: 10.1073/pnas.89.15.6803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Langridge J. Genetic and enzymatic experiments relating to the tertiary structure of beta-galactosidase. J Bacteriol. 1968 Nov;96(5):1711–1717. doi: 10.1128/jb.96.5.1711-1717.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Liao H., McKenzie T., Hageman R. Isolation of a thermostable enzyme variant by cloning and selection in a thermophile. Proc Natl Acad Sci U S A. 1986 Feb;83(3):576–580. doi: 10.1073/pnas.83.3.576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Makino Y., Negoro S., Urabe I., Okada H. Stability-increasing mutants of glucose dehydrogenase from Bacillus megaterium IWG3. J Biol Chem. 1989 Apr 15;264(11):6381–6385. [PubMed] [Google Scholar]
  40. Manning M. C., Patel K., Borchardt R. T. Stability of protein pharmaceuticals. Pharm Res. 1989 Nov;6(11):903–918. doi: 10.1023/a:1015929109894. [DOI] [PubMed] [Google Scholar]
  41. Matsumura M., Aiba S. Screening for thermostable mutant of kanamycin nucleotidyltransferase by the use of a transformation system for a thermophile, Bacillus stearothermophilus. J Biol Chem. 1985 Dec 5;260(28):15298–15303. [PubMed] [Google Scholar]
  42. Matsumura M., Yasumura S., Aiba S. Cumulative effect of intragenic amino-acid replacements on the thermostability of a protein. 1986 Sep 25-Oct 1Nature. 323(6086):356–358. doi: 10.1038/323356a0. [DOI] [PubMed] [Google Scholar]
  43. Matthews B. W., Nicholson H., Becktel W. J. Enhanced protein thermostability from site-directed mutations that decrease the entropy of unfolding. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6663–6667. doi: 10.1073/pnas.84.19.6663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Matthews B. W. Structural and genetic analysis of protein stability. Annu Rev Biochem. 1993;62:139–160. doi: 10.1146/annurev.bi.62.070193.001035. [DOI] [PubMed] [Google Scholar]
  45. Menéndez-Arias L., Argos P. Engineering protein thermal stability. Sequence statistics point to residue substitutions in alpha-helices. J Mol Biol. 1989 Mar 20;206(2):397–406. doi: 10.1016/0022-2836(89)90488-9. [DOI] [PubMed] [Google Scholar]
  46. More N., Daniel R. M., Petach H. H. The effect of low temperatures on enzyme activity. Biochem J. 1995 Jan 1;305(Pt 1):17–20. doi: 10.1042/bj3050017. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Mozhaev V. V. Mechanism-based strategies for protein thermostabilization. Trends Biotechnol. 1993 Mar;11(3):88–95. doi: 10.1016/0167-7799(93)90057-G. [DOI] [PubMed] [Google Scholar]
  48. Mozhaev V. V., Poltevsky K. G., Slepnev V. I., Badun G. A., Levashov A. V. Homogeneous solutions of hydrophilic enzymes in nonpolar organic solvents. New systems for fundamental studies and biocatalytic transformations. FEBS Lett. 1991 Nov 4;292(1-2):159–161. doi: 10.1016/0014-5793(91)80857-y. [DOI] [PubMed] [Google Scholar]
  49. Mullaney P. F. Dry thermal inactivation of trypsin and ribonuclease. Nature. 1966 May 28;210(5039):953–953. doi: 10.1038/210953a0. [DOI] [PubMed] [Google Scholar]
  50. Nagao T., Makino Y., Yamamoto K., Urabe I., Okada H. Stability-increasing mutants of glucose dehydrogenase. FEBS Lett. 1989 Aug 14;253(1-2):113–116. doi: 10.1016/0014-5793(89)80941-x. [DOI] [PubMed] [Google Scholar]
  51. Neet K. E., Koshland D. E., Jr The conversion of serine at the active site of subtilisin to cysteine: a "chemical mutation". Proc Natl Acad Sci U S A. 1966 Nov;56(5):1606–1611. doi: 10.1073/pnas.56.5.1606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Ota I. M., Clarke S. Calcium affects the spontaneous degradation of aspartyl/asparaginyl residues in calmodulin. Biochemistry. 1989 May 2;28(9):4020–4027. doi: 10.1021/bi00435a058. [DOI] [PubMed] [Google Scholar]
  53. PARTRIDGE S. M., DAVIS H. F. Preferential release of aspartic acid during the hydrolysis of proteins. Nature. 1950 Jan 14;165(4185):62–62. doi: 10.1038/165062a0. [DOI] [PubMed] [Google Scholar]
  54. Pakula A. A., Young V. B., Sauer R. T. Bacteriophage lambda cro mutations: effects on activity and intracellular degradation. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8829–8833. doi: 10.1073/pnas.83.23.8829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Pantoliano M. W., Whitlow M., Wood J. F., Dodd S. W., Hardman K. D., Rollence M. L., Bryan P. N. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Biochemistry. 1989 Sep 5;28(18):7205–7213. doi: 10.1021/bi00444a012. [DOI] [PubMed] [Google Scholar]
  56. Parak F., Frolov E. N., Kononenko A. A., Mössbauer R. L., Goldanskii V. I., Rubin A. B. Evidence for a correlation between the photoinduced electron transfer and dynamic properties of the chromatophore membranes from Rhodospirillum rubrum. FEBS Lett. 1980 Aug 11;117(1):368–372. doi: 10.1016/0014-5793(80)80982-3. [DOI] [PubMed] [Google Scholar]
  57. Parak F., Knapp E. W., Kucheida D. Protein dynamics. Mössbauer spectroscopy on deoxymyoglobin crystals. J Mol Biol. 1982 Oct 15;161(1):177–194. doi: 10.1016/0022-2836(82)90285-6. [DOI] [PubMed] [Google Scholar]
  58. Patel K., Borchardt R. T. Chemical pathways of peptide degradation. III. Effect of primary sequence on the pathways of deamidation of asparaginyl residues in hexapeptides. Pharm Res. 1990 Aug;7(8):787–793. doi: 10.1023/a:1015999012852. [DOI] [PubMed] [Google Scholar]
  59. Persechini A., Kretsinger R. H. The central helix of calmodulin functions as a flexible tether. J Biol Chem. 1988 Sep 5;263(25):12175–12178. [PubMed] [Google Scholar]
  60. Perutz M. F., Raidt H. Stereochemical basis of heat stability in bacterial ferredoxins and in haemoglobin A2. Nature. 1975 May 15;255(5505):256–259. doi: 10.1038/255256a0. [DOI] [PubMed] [Google Scholar]
  61. Piller K., Daniel R. M., Petach H. H. Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: enzyme activity at 130 degrees C. Biochim Biophys Acta. 1996 Jan 4;1292(1):197–205. doi: 10.1016/0167-4838(95)00203-0. [DOI] [PubMed] [Google Scholar]
  62. Privalov P. L. Stability of proteins: small globular proteins. Adv Protein Chem. 1979;33:167–241. doi: 10.1016/s0065-3233(08)60460-x. [DOI] [PubMed] [Google Scholar]
  63. Rennell D., Bouvier S. E., Hardy L. W., Poteete A. R. Systematic mutation of bacteriophage T4 lysozyme. J Mol Biol. 1991 Nov 5;222(1):67–88. doi: 10.1016/0022-2836(91)90738-r. [DOI] [PubMed] [Google Scholar]
  64. Rupley J. A., Careri G. Protein hydration and function. Adv Protein Chem. 1991;41:37–172. doi: 10.1016/s0065-3233(08)60197-7. [DOI] [PubMed] [Google Scholar]
  65. Russell R. J., Hough D. W., Danson M. J., Taylor G. L. The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure. 1994 Dec 15;2(12):1157–1167. doi: 10.1016/s0969-2126(94)00118-9. [DOI] [PubMed] [Google Scholar]
  66. Serrano L., Fersht A. R. Capping and alpha-helix stability. Nature. 1989 Nov 16;342(6247):296–299. doi: 10.1038/342296a0. [DOI] [PubMed] [Google Scholar]
  67. Shalitin Y., Bernhard S. A. Cooperative effects of functional groups in peptides. II. Elimination reactions in aspartyl-(O-acyl)-serine derivatives. J Am Chem Soc. 1966 Oct 20;88(20):4711–4721. doi: 10.1021/ja00972a035. [DOI] [PubMed] [Google Scholar]
  68. Shoichet B. K., Baase W. A., Kuroki R., Matthews B. W. A relationship between protein stability and protein function. Proc Natl Acad Sci U S A. 1995 Jan 17;92(2):452–456. doi: 10.1073/pnas.92.2.452. [DOI] [PMC free article] [PubMed] [Google Scholar]
  69. Simpson H. D., Haufler U. R., Daniel R. M. An extremely thermostable xylanase from the thermophilic eubacterium Thermotoga. Biochem J. 1991 Jul 15;277(Pt 2):413–417. doi: 10.1042/bj2770413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  70. Stephenson R. C., Clarke S. Succinimide formation from aspartyl and asparaginyl peptides as a model for the spontaneous degradation of proteins. J Biol Chem. 1989 Apr 15;264(11):6164–6170. [PubMed] [Google Scholar]
  71. Teh L. C., Murphy L. J., Huq N. L., Surus A. S., Friesen H. G., Lazarus L., Chapman G. E. Methionine oxidation in human growth hormone and human chorionic somatomammotropin. Effects on receptor binding and biological activities. J Biol Chem. 1987 May 15;262(14):6472–6477. [PubMed] [Google Scholar]
  72. Terwilliger T. C., Clarke S. Methylation of membrane proteins in human erythrocytes. Identification and characterization of polypeptides methylated in lysed cells. J Biol Chem. 1981 Mar 25;256(6):3067–3076. [PubMed] [Google Scholar]
  73. Tidor B. Helix-capping interaction in lambda Cro protein: a free energy simulation analysis. Proteins. 1994 Aug;19(4):310–323. doi: 10.1002/prot.340190406. [DOI] [PubMed] [Google Scholar]
  74. Tomazic S. J., Klibanov A. M. Why is one Bacillus alpha-amylase more resistant against irreversible thermoinactivation than another? J Biol Chem. 1988 Mar 5;263(7):3092–3096. [PubMed] [Google Scholar]
  75. Tomizawa H., Yamada H., Wada K., Imoto T. Stabilization of lysozyme against irreversible inactivation by suppression of chemical reactions. J Biochem. 1995 Mar;117(3):635–640. doi: 10.1093/oxfordjournals.jbchem.a124756. [DOI] [PubMed] [Google Scholar]
  76. Toogood H. S., Prescott M., Daniel R. M. A pepstatin-insensitive aspartic proteinase from a thermophilic Bacillus sp. Biochem J. 1995 May 1;307(Pt 3):783–789. doi: 10.1042/bj3070783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Varley P. G., Pain R. H. Relation between stability, dynamics and enzyme activity in 3-phosphoglycerate kinases from yeast and Thermus thermophilus. J Mol Biol. 1991 Jul 20;220(2):531–538. doi: 10.1016/0022-2836(91)90028-5. [DOI] [PubMed] [Google Scholar]
  78. Vihinen M. Relationship of protein flexibility to thermostability. Protein Eng. 1987 Dec;1(6):477–480. doi: 10.1093/protein/1.6.477. [DOI] [PubMed] [Google Scholar]
  79. Voorter C. E., de Haard-Hoekman W. A., van den Oetelaar P. J., Bloemendal H., de Jong W. W. Spontaneous peptide bond cleavage in aging alpha-crystallin through a succinimide intermediate. J Biol Chem. 1988 Dec 15;263(35):19020–19023. [PubMed] [Google Scholar]
  80. Vriend G., Berendsen H. J., van der Zee J. R., van den Burg B., Venema G., Eijsink V. G. Stabilization of the neutral protease of Bacillus stearothermophilus by removal of a buried water molecule. Protein Eng. 1991 Dec;4(8):941–945. doi: 10.1093/protein/4.8.941. [DOI] [PubMed] [Google Scholar]
  81. Wagner G., Wüthrich K. Correlation between the amide proton exchange rates and the denaturation temperatures in globular proteins related to the basic pancreatic trypsin inhibitor. J Mol Biol. 1979 May 5;130(1):31–37. doi: 10.1016/0022-2836(79)90550-3. [DOI] [PubMed] [Google Scholar]
  82. Watanabe K., Masuda T., Ohashi H., Mihara H., Suzuki Y. Multiple proline substitutions cumulatively thermostabilize Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Irrefragable proof supporting the proline rule. Eur J Biochem. 1994 Dec 1;226(2):277–283. doi: 10.1111/j.1432-1033.1994.tb20051.x. [DOI] [PubMed] [Google Scholar]
  83. Wearne S. J., Creighton T. E. Effect of protein conformation on rate of deamidation: ribonuclease A. Proteins. 1989;5(1):8–12. doi: 10.1002/prot.340050103. [DOI] [PubMed] [Google Scholar]
  84. White R. H. Hydrolytic stability of biomolecules at high temperatures and its implication for life at 250 degrees C. Nature. 1984 Aug 2;310(5976):430–432. doi: 10.1038/310430a0. [DOI] [PubMed] [Google Scholar]
  85. Wrba A., Schweiger A., Schultes V., Jaenicke R., Závodszky P. Extremely thermostable D-glyceraldehyde-3-phosphate dehydrogenase from the eubacterium Thermotoga maritima. Biochemistry. 1990 Aug 21;29(33):7584–7592. doi: 10.1021/bi00485a007. [DOI] [PubMed] [Google Scholar]
  86. Zale S. E., Klibanov A. M. Why does ribonuclease irreversibly inactivate at high temperatures? Biochemistry. 1986 Sep 23;25(19):5432–5444. doi: 10.1021/bi00367a014. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES