Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):147–155. doi: 10.1042/bj3170147

Purification and characterization of assimilatory nitrite reductase from Candida utilis.

S Sengupta 1, M S Shaila 1, G R Rao 1
PMCID: PMC1217456  PMID: 8694757

Abstract

Nitrate assimilation in many plants, algae, yeasts and bacteria is mediated by two enzymes, nitrate reductase (EC 1.6.6.2) and nitrite reductase (EC 1.7.7.1). They catalyse the stepwise reduction of nitrate to nitrite and nitrite to ammonia respectively. The nitrite reductase from an industrially important yeast, Candida utilis, has been purified to homogeneity. Purified nitrite reductase is a heterodimer and the molecular masses of the two subunits are 58 and 66 kDa. The native enzyme exhibits a molecular mass of 126 kDa as analysed by gel filtration. The identify of the two subunits of nitrite reductase was confirmed by immunoblotting using antibody for Cucurbita pepo leaf nitrite reductase. The presence of two different sized transcripts coding for the two subunits was confirmed by (a) in vitro translation of mRNA from nitrate-induced C. utilis followed by immunoprecipitation of the in vitro translated products with heterologous nitrite reductase antibody and (b) Northern-blot analysis. The 66 kDa subunit is acidic in nature which is probably due to its phosphorylated status. The enzyme is stable over a range of temperatures. Both subunits can catalyse nitrite reduction, and the reconstituted enzyme, at a higher protein concentration, shows an activity similar to that of the purified enzyme. Each of these subunits has been shown to contain a few unique peptides in addition to a large number of common peptides. Reduced Methyl Viologen has been found to be as effective an electron donor as NADPH in the catalytic process, a phenomenon not commonly seen for nitrite reductases from other systems.

Full Text

The Full Text of this article is available as a PDF (404.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arizmendi J. M., Serra J. L. Purification and some properties of the nitrite reductase from the cyanobacterium Phormidium laminosum. Biochim Biophys Acta. 1990 Sep 3;1040(2):237–244. doi: 10.1016/0167-4838(90)90082-q. [DOI] [PubMed] [Google Scholar]
  2. Aslam M., Huffaker R. C. Role of nitrate and nitrite in the induction of nitrite reductase in leaves of barley seedlings. Plant Physiol. 1989;91:1152–1156. doi: 10.1104/pp.91.3.1152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Back E., Burkhart W., Moyer M., Privalle L., Rothstein S. Isolation of cDNA clones coding for spinach nitrite reductase: complete sequence and nitrate induction. Mol Gen Genet. 1988 Apr;212(1):20–26. doi: 10.1007/BF00322440. [DOI] [PubMed] [Google Scholar]
  4. Brul S., Veltman R. H., Lombardo M. C., Vogels G. D. Molecular cloning of hydrogenosomal ferredoxin cDNA from the anaerobic amoeboflagellate Psalteriomonas lanterna. Biochim Biophys Acta. 1994 Jan 4;1183(3):544–546. doi: 10.1016/0005-2728(94)90082-5. [DOI] [PubMed] [Google Scholar]
  5. Campbell W. H., Kinghorn K. R. Functional domains of assimilatory nitrate reductases and nitrite reductases. Trends Biochem Sci. 1990 Aug;15(8):315–319. doi: 10.1016/0968-0004(90)90021-3. [DOI] [PubMed] [Google Scholar]
  6. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  7. Choudary V. P., Rao G. R. Regulatory properties of yeast nitrate reductase in situ. Can J Microbiol. 1976 Jan;22(1):35–42. doi: 10.1139/m76-005. [DOI] [PubMed] [Google Scholar]
  8. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  9. Dumas C., Lascu I., Moréra S., Glaser P., Fourme R., Wallet V., Lacombe M. L., Véron M., Janin J. X-ray structure of nucleoside diphosphate kinase. EMBO J. 1992 Sep;11(9):3203–3208. doi: 10.1002/j.1460-2075.1992.tb05397.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Garrett R. H. The induction of nitrite reductase in Neurospora crassa. Biochim Biophys Acta. 1972 May 16;264(3):481–489. doi: 10.1016/0304-4165(72)90011-6. [DOI] [PubMed] [Google Scholar]
  11. Goodman S. I., Axtell K. M., Bindoff L. A., Beard S. E., Gill R. E., Frerman F. E. Molecular cloning and expression of a cDNA encoding human electron transfer flavoprotein-ubiquinone oxidoreductase. Eur J Biochem. 1994 Jan 15;219(1-2):277–286. doi: 10.1111/j.1432-1033.1994.tb19939.x. [DOI] [PubMed] [Google Scholar]
  12. Guerrero M. G., Gutierrez M. Purification and properties of the NAD(P)H:nitrate reductase of the yeast Rhodotorula glutinis. Biochim Biophys Acta. 1977 Jun 10;482(2):272–285. doi: 10.1016/0005-2744(77)90241-8. [DOI] [PubMed] [Google Scholar]
  13. Gupta S. C., Beevers L. Regulation of nitrite reductase : cell-free translation and processing. Plant Physiol. 1987 Apr;83(4):750–754. doi: 10.1104/pp.83.4.750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hager D. A., Burgess R. R. Elution of proteins from sodium dodecyl sulfate-polyacrylamide gels, removal of sodium dodecyl sulfate, and renaturation of enzymatic activity: results with sigma subunit of Escherichia coli RNA polymerase, wheat germ DNA topoisomerase, and other enzymes. Anal Biochem. 1980 Nov 15;109(1):76–86. doi: 10.1016/0003-2697(80)90013-5. [DOI] [PubMed] [Google Scholar]
  15. Hartree E. F. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972 Aug;48(2):422–427. doi: 10.1016/0003-2697(72)90094-2. [DOI] [PubMed] [Google Scholar]
  16. Hilliard N. P., Hirasawa M., Knaff D. B., Shaw R. W. A reexamination of the properties of spinach nitrite reductase: protein and siroheme content heterogeneity in purified preparations. Arch Biochem Biophys. 1991 Nov 15;291(1):195–199. doi: 10.1016/0003-9861(91)90123-z. [DOI] [PubMed] [Google Scholar]
  17. Hirasawa M., Gray K. A., Sung J. D., Knaff D. B. Spinach nitrite reductase: subunit composition and siroheme redox potential. Arch Biochem Biophys. 1989 Nov 15;275(1):1–10. doi: 10.1016/0003-9861(89)90342-1. [DOI] [PubMed] [Google Scholar]
  18. Ida S. Purification to homogeneity of spinach nitrite reductase by ferredoxin-sepharose affinity chromatography. J Biochem. 1977 Sep;82(3):915–918. doi: 10.1093/oxfordjournals.jbchem.a131769. [DOI] [PubMed] [Google Scholar]
  19. Johnstone I. L., McCabe P. C., Greaves P., Gurr S. J., Cole G. E., Brow M. A., Unkles S. E., Clutterbuck A. J., Kinghorn J. R., Innis M. A. Isolation and characterisation of the crnA-niiA-niaD gene cluster for nitrate assimilation in Aspergillus nidulans. Gene. 1990 Jun 15;90(2):181–192. doi: 10.1016/0378-1119(90)90178-t. [DOI] [PubMed] [Google Scholar]
  20. Kimura T., Suzuki K. Components of the electron transport system in adrenal steroid hydroxylase. Isolation and properties of non-heme iron protein (adrenodoxin). J Biol Chem. 1967 Feb 10;242(3):485–491. [PubMed] [Google Scholar]
  21. Knaff D. B., Hirasawa M. Ferredoxin-dependent chloroplast enzymes. Biochim Biophys Acta. 1991 Jan 22;1056(2):93–125. doi: 10.1016/s0005-2728(05)80277-4. [DOI] [PubMed] [Google Scholar]
  22. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  23. Lahners K., Kramer V., Back E., Privalle L., Rothstein S. Molecular cloning of complementary DNA encoding maize nitrite reductase: molecular analysis and nitrate induction. Plant Physiol. 1988 Nov;88(3):741–746. doi: 10.1104/pp.88.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Laskey R. A., Mills A. D. Quantitative film detection of 3H and 14C in polyacrylamide gels by fluorography. Eur J Biochem. 1975 Aug 15;56(2):335–341. doi: 10.1111/j.1432-1033.1975.tb02238.x. [DOI] [PubMed] [Google Scholar]
  25. Losberger C., Ernst J. F. Sequence of the Candida albicans gene encoding actin. Nucleic Acids Res. 1989 Nov 25;17(22):9488–9488. doi: 10.1093/nar/17.22.9488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Mutch E., Woodhouse K. W., Williams F. M., Lambert D., James O. F., Rawlins M. D. 2,5-Diphenyloxazole as a probe for microsomal mono-oxygenation in human and rat liver. Xenobiotica. 1985 Jul;15(7):599–603. doi: 10.3109/00498258509045889. [DOI] [PubMed] [Google Scholar]
  27. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  28. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  29. Serra J. L., Ibarlucea J. M., Arizmendi J. M., Llama M. J. Purification and properties of the assimilatory nitrite reductase from barley Hordeum vulgare leaves. Biochem J. 1982 Jan 1;201(1):167–170. doi: 10.1042/bj2010167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Solomonson L. P., Vennesland B. Nitrate Reductase and Chlorate Toxicity in Chlorella vulgaris Beijerinck. Plant Physiol. 1972 Oct;50(4):421–424. doi: 10.1104/pp.50.4.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Suzuki Y., Maeda Y., Sakai H., Fujimoto S., Morita Y. Mössbauer effect and electron paramagnetic resonance studies on yeast aconitase. J Biochem. 1975 Sep;78(3):555–560. doi: 10.1093/oxfordjournals.jbchem.a130940. [DOI] [PubMed] [Google Scholar]
  32. Swindells M. B., Orengo C. A., Jones D. T., Pearl L. H., Thornton J. M. Recurrence of a binding motif? Nature. 1993 Mar 25;362(6418):299–299. doi: 10.1038/362299a0. [DOI] [PubMed] [Google Scholar]
  33. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Vega J. M., Guerrero M. G., Leadbetter E., Losada M. Reduced nicotinamide-adenine dinucleotide-nitrite reductase from Azotobacter chroococcum. Biochem J. 1973 Aug;133(4):701–708. doi: 10.1042/bj1330701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Vega J. M., Kamin H. Spinach nitrite reductase. Purification and properties of a siroheme-containing iron-sulfur enzyme. J Biol Chem. 1977 Feb 10;252(3):896–909. [PubMed] [Google Scholar]
  36. Wickerham L. J. A Critical Evaluation of the Nitrogen Assimilation Tests Commonly Used in the Classification of Yeasts. J Bacteriol. 1946 Sep;52(3):293–301. [PMC free article] [PubMed] [Google Scholar]
  37. Wintersberger U., Smith P., Letnansky K. Yeast chromatin. Preparation from isolated nuclei, histone composition and transcription capacity. Eur J Biochem. 1973 Feb 15;33(1):123–130. doi: 10.1111/j.1432-1033.1973.tb02663.x. [DOI] [PubMed] [Google Scholar]
  38. Zumft W. G. Ferredoxin:nitrite oxidoreductase from Chlorella. Purification and properties. Biochim Biophys Acta. 1972 Aug 28;276(2):363–375. doi: 10.1016/0005-2744(72)90996-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES