Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):157–165. doi: 10.1042/bj3170157

N-acetyl-D-neuraminic acid lyase generates the sialic acid for colominic acid biosynthesis in Escherichia coli K1.

M A Ferrero 1, A Reglero 1, M Fernandez-Lopez 1, R Ordas 1, L B Rodriguez-Aparicio 1
PMCID: PMC1217457  PMID: 8694758

Abstract

Colominic acid is a capsular homopolymer from Escherichia coli K1 composed of alpha (2-8)-linked N-acetyl-D-neuraminic acid (NeuAc) residues. Recently, we have described that NeuAc synthesis in this bacterium occurs through the action of NeuAc lyase (EC 4.1.3.3) [ Rodríguez-Aparicio, Ferrero and Reglero (1995) Biochem. J.308, 501-505]. In the present work we analysed and characterized this enzyme. E. coli K1 NeuAc lyase is detected from the early logarithmic phase of growth, is induced by NeuAc and is not repressed by glucose. The enzyme was purified to apparent homogeneity (312-fold) using two types of hydrophobic chromatographies (butyl-agarose and phenyl-Sepharose CL-4B), gel filtration on Sephacryl S-200, and anion-exchange chromatography on DEAE-FPLC. The pure enzyme, whose amino acid composition and N-terminal amino acid sequence are also established, has a native molecular mass, estimated by gel filtration, of 135 +/- 3 kDa, whereas its molecular mass in SDS/PAGE was 33 +/- 1 kDa. The enzyme was able to synthesize and cleave NeuAc in a reversible reaction. The maximal rate of catalysis was achieved in 125 mM Tris/HCl buffer, pH 7.8, at 37 degrees C. Under these conditions, the K(m) values calculated for N-acetyl-D-mannosamine and pyruvate (condensation direction), and NeuAc (hydrolysis direction) were 7.7, 8.3 and 4.8 mM respectively. NeuAc synthesis by the pure enzyme was activated by Ca2+ and inhibited by Mn2+ and NeuAc, whereas the enzyme cleavage direction was inhibited by Ca2+, Mn2+ and pyruvate. The reaction products, NeuAc and pyruvate, and Ca2+ are able to regulate the direction of this enzyme (synthesis or cleavage of sialic acid) and, accordingly, to modulate colominic acid biosynthesis.

Full Text

The Full Text of this article is available as a PDF (696.9 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aisaka K., Igarashi A., Yamaguchi K., Uwajima T. Purification, crystallization and characterization of N-acetylneuraminate lyase from Escherichia coli. Biochem J. 1991 Jun 1;276(Pt 2):541–546. doi: 10.1042/bj2760541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARRY G. T. Detection of sialic acid in various Escherichia coli strains and in other species of bacteria. Nature. 1959 Jan 10;183(4654):117–118. doi: 10.1038/183117a0. [DOI] [PubMed] [Google Scholar]
  3. BARRY G. T., GOEBEL W. F. Colominic acid, a substance of bacterial origin related to sialic acid. Nature. 1957 Jan 26;179(4552):206–206. doi: 10.1038/179206a0. [DOI] [PubMed] [Google Scholar]
  4. BLACKLOW R. S., WARREN L. Biosynthesis of sialic acids by Neisseria meningitidis. J Biol Chem. 1962 Nov;237:3520–3526. [PubMed] [Google Scholar]
  5. Bhattacharjee A. K., Jennings H. J., Kenny C. P., Martin A., Smith I. C. Structural determination of the sialic acid polysaccharide antigens of Neisseria meningitidis serogroups B and C with carbon 13 nuclear magnetic resonance. J Biol Chem. 1975 Mar 10;250(5):1926–1932. [PubMed] [Google Scholar]
  6. Bidlingmeyer B. A., Cohen S. A., Tarvin T. L. Rapid analysis of amino acids using pre-column derivatization. J Chromatogr. 1984 Dec 7;336(1):93–104. doi: 10.1016/s0378-4347(00)85133-6. [DOI] [PubMed] [Google Scholar]
  7. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  8. COMB D. G., ROSEMAN S. The sialic acids. I. The structure and enzymatic synthesis of N-acetylneuraminic acid. J Biol Chem. 1960 Sep;235:2529–2537. [PubMed] [Google Scholar]
  9. DeVries G. H., Binkley S. B. N-acetylneuraminic acid aldolase of Clostridium perfringens: purification, properties and mechanism of action. Arch Biochem Biophys. 1972 Jul;151(1):234–242. doi: 10.1016/0003-9861(72)90493-6. [DOI] [PubMed] [Google Scholar]
  10. Ey P. L., Prowse S. J., Jenkin C. R. Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry. 1978 Jul;15(7):429–436. doi: 10.1016/0161-5890(78)90070-6. [DOI] [PubMed] [Google Scholar]
  11. Ferrero M. A., Luengo J. M., Reglero A. H.p.l.c. of oligo(sialic acids). Application to the determination of the minimal chain length serving as exogenous acceptor in the enzymic synthesis of colominic acid. Biochem J. 1991 Dec 15;280(Pt 3):575–579. doi: 10.1042/bj2800575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Finne J., Bitter-Suermann D., Goridis C., Finne U. An IgG monoclonal antibody to group B meningococci cross-reacts with developmentally regulated polysialic acid units of glycoproteins in neural and extraneural tissues. J Immunol. 1987 Jun 15;138(12):4402–4407. [PubMed] [Google Scholar]
  13. Finne J. Occurrence of unique polysialosyl carbohydrate units in glycoproteins of developing brain. J Biol Chem. 1982 Oct 25;257(20):11966–11970. [PubMed] [Google Scholar]
  14. González-Clemente C., Luengo J. M., Rodríguez-Aparicio L. B., Ferrero M. A., Reglero A. High production of polysialic acid [Neu5Ac alpha(2-8)-Neu5Ac alpha(2-9)]n by Escherichia coli K92 grown in a chemically defined medium. Regulation of temperature. Biol Chem Hoppe Seyler. 1990 Nov;371(11):1101–1106. doi: 10.1515/bchm3.1990.371.2.1101. [DOI] [PubMed] [Google Scholar]
  15. González-Clemente C., Luengo J. M., Rodríguez-Aparicio L. B., Reglero A. Regulation of colominic acid biosynthesis by temperature: role of cytidine 5'-monophosphate N-acetylneuraminic acid synthetase. FEBS Lett. 1989 Jul 3;250(2):429–432. doi: 10.1016/0014-5793(89)80770-7. [DOI] [PubMed] [Google Scholar]
  16. Hewick R. M., Hunkapiller M. W., Hood L. E., Dreyer W. J. A gas-liquid solid phase peptide and protein sequenator. J Biol Chem. 1981 Aug 10;256(15):7990–7997. [PubMed] [Google Scholar]
  17. Izard T., Lawrence M. C., Malby R. L., Lilley G. G., Colman P. M. The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli. Structure. 1994 May 15;2(5):361–369. doi: 10.1016/s0969-2126(00)00038-1. [DOI] [PubMed] [Google Scholar]
  18. Kaijser B., Hanson L. A., Jodal U., Lidin-Janson G., Robbins J. B. Frequency of E. coli K antigens in urinary-tract infections in children. Lancet. 1977 Mar 26;1(8013):663–666. doi: 10.1016/s0140-6736(77)92111-0. [DOI] [PubMed] [Google Scholar]
  19. Kundig J. D., Aminoff D., Roseman S. The sialic acids. XII. Synthesis of colominic acid by a sialyltransferase from Escherichia coli K-235. J Biol Chem. 1971 Apr 25;246(8):2543–2550. [PubMed] [Google Scholar]
  20. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  21. Liu T. Y., Gotschlich E. C., Dunne F. T., Jonssen E. K. Studies on the meningococcal polysaccharides. II. Composition and chemical properties of the group B and group C polysaccharide. J Biol Chem. 1971 Aug 10;246(15):4703–4712. [PubMed] [Google Scholar]
  22. Masson L., Holbein B. E. Physiology of sialic acid capsular polysaccharide synthesis in serogroup B Neisseria meningitidis. J Bacteriol. 1983 May;154(2):728–736. doi: 10.1128/jb.154.2.728-736.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. McCracken G. H., Jr, Sarff L. D., Glode M. P., Mize S. G., Schiffer M. S., Robbins J. B., Gotschlich E. C., Orskov I., Orskov F. Relation between Escherichia coli K1 capsular polysaccharide antigen and clinical outcome in neonatal meningitis. Lancet. 1974 Aug 3;2(7875):246–250. doi: 10.1016/s0140-6736(74)91413-5. [DOI] [PubMed] [Google Scholar]
  24. Merker R. I., Troy F. A. Biosynthesis of the polysialic acid capsule in Escherichia coli K1. Cold inactivation of sialic acid synthase regulates capsule expression below 20 degrees C. Glycobiology. 1990 Sep;1(1):93–100. doi: 10.1093/glycob/1.1.93. [DOI] [PubMed] [Google Scholar]
  25. Montreuil J. Primary structure of glycoprotein glycans: basis for the molecular biology of glycoproteins. Adv Carbohydr Chem Biochem. 1980;37:157–223. doi: 10.1016/s0065-2318(08)60021-9. [DOI] [PubMed] [Google Scholar]
  26. Mulder C. J., Zanen H. C. Neonatal group B streptococcal meningitis. Arch Dis Child. 1984 May;59(5):439–443. doi: 10.1136/adc.59.5.439. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Nees S., Schauer R., Mayer F. Purification and characterization of N-acetylneuraminate lyase from Clostridium perfringens. Hoppe Seylers Z Physiol Chem. 1976 Jun;357(6):839–853. doi: 10.1515/bchm2.1976.357.1.839. [DOI] [PubMed] [Google Scholar]
  28. Ohta Y., Watanabe K., Kimura A. Complete nucleotide sequence of the E. coli N-acetylneuraminate lyase. Nucleic Acids Res. 1985 Dec 20;13(24):8843–8852. doi: 10.1093/nar/13.24.8843. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Ortiz A. I., Reglero A., Rodríguez-Aparicio L. B., Luengo J. M. In vitro synthesis of colominic acid by membrane-bound sialyltransferase of Escherichia coli K-235. Kinetic properties of this enzyme and inhibition by CMP and other cytidine nucleotides. Eur J Biochem. 1989 Jan 2;178(3):741–749. doi: 10.1111/j.1432-1033.1989.tb14505.x. [DOI] [PubMed] [Google Scholar]
  30. Pangburn M. K., Müller-Eberhard H. J. Complement C3 convertase: cell surface restriction of beta1H control and generation of restriction on neuraminidase-treated cells. Proc Natl Acad Sci U S A. 1978 May;75(5):2416–2420. doi: 10.1073/pnas.75.5.2416. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Reglero A., Rodríguez-Aparicio L. B., Luengo J. M. Polysialic acids. Int J Biochem. 1993 Nov;25(11):1517–1527. doi: 10.1016/0020-711x(93)90507-b. [DOI] [PubMed] [Google Scholar]
  32. Rodríguez-Aparicio L. B., Ferrero M. A., Reglero A. N-acetyl-D-neuraminic acid synthesis in Escherichia coli K1 occurs through condensation of N-acetyl-D-mannosamine and pyruvate. Biochem J. 1995 Jun 1;308(Pt 2):501–505. doi: 10.1042/bj3080501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Rodríguez-Aparicio L. B., Luengo J. M., Ferrero M. A., Reglero A. Comparative analysis of the antibodies against capsular polysaccharides of Escherichia coli K-92 and K-235: an immunochemical method for the identification of polysialic acids. Int J Biochem. 1993 Mar;25(3):427–432. doi: 10.1016/0020-711x(93)90635-r. [DOI] [PubMed] [Google Scholar]
  34. Rodríguez-Aparicio L. B., Luengo J. M., González-Clemente C., Reglero A. Purification and characterization of the nuclear cytidine 5'-monophosphate N-acetylneuraminic acid synthetase from rat liver. J Biol Chem. 1992 May 5;267(13):9257–9263. [PubMed] [Google Scholar]
  35. Rodríguez-Aparicio L. B., Reglero A., Ortiz A. I., Luengo J. M. A protein-sialyl polymer complex involved in colominic acid biosynthesis. Effect of tunicamycin. Biochem J. 1988 Apr 15;251(2):589–596. doi: 10.1042/bj2510589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sarff L. D., McCracken G. H., Schiffer M. S., Glode M. P., Robbins J. B., Orskov I., Orskov F. Epidemiology of Escherichia coli K1 in healthy and diseased newborns. Lancet. 1975 May 17;1(7916):1099–1104. doi: 10.1016/s0140-6736(75)92496-4. [DOI] [PubMed] [Google Scholar]
  37. Schachter H., Jabbal I., Hudgin R. L., Pinteric L., McGuire E. J., Roseman S. Intracellular localization of liver sugar nucleotide glycoprotein glycosyltransferases in a Golgi-rich fraction. J Biol Chem. 1970 Mar 10;245(5):1090–1100. [PubMed] [Google Scholar]
  38. Schauer R. Chemistry, metabolism, and biological functions of sialic acids. Adv Carbohydr Chem Biochem. 1982;40:131–234. doi: 10.1016/s0065-2318(08)60109-2. [DOI] [PubMed] [Google Scholar]
  39. Silver R. P., Finn C. W., Vann W. F., Aaronson W., Schneerson R., Kretschmer P. J., Garon C. F. Molecular cloning of the K1 capsular polysaccharide genes of E. coli. Nature. 1981 Feb 19;289(5799):696–698. doi: 10.1038/289696b0. [DOI] [PubMed] [Google Scholar]
  40. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Troy F. A., 2nd Polysialylation: from bacteria to brains. Glycobiology. 1992 Feb;2(1):5–23. doi: 10.1093/glycob/2.1.5. [DOI] [PubMed] [Google Scholar]
  42. Troy F. A., 2nd The chemistry and biosynthesis of selected bacterial capsular polymers. Annu Rev Microbiol. 1979;33:519–560. doi: 10.1146/annurev.mi.33.100179.002511. [DOI] [PubMed] [Google Scholar]
  43. Troy F. A., McCloskey M. A. Role of a membranous sialyltransferase complex in the synthesis of surface polymers containing polysialic acid in Escherichia coli. Temperature-induced alteration in the assembly process. J Biol Chem. 1979 Aug 10;254(15):7377–7387. [PubMed] [Google Scholar]
  44. Uchida Y., Tsukada Y., Sugimori T. Purification and properties of N-acetylneuraminate lyase from Escherichia coli. J Biochem. 1984 Aug;96(2):507–522. doi: 10.1093/oxfordjournals.jbchem.a134863. [DOI] [PubMed] [Google Scholar]
  45. Van Rinsum J., Van Dijk W., Hooghwinkel G. J., Ferwerda W. Subcellular localization and tissue distribution of sialic acid precursor-forming enzymes. Biochem J. 1983 Jan 15;210(1):21–28. doi: 10.1042/bj2100021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Vimr E. R., Lawrisuk L., Galen J., Kaper J. B. Cloning and expression of the Vibrio cholerae neuraminidase gene nanH in Escherichia coli. J Bacteriol. 1988 Apr;170(4):1495–1504. doi: 10.1128/jb.170.4.1495-1504.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Vimr E. R., Troy F. A. Identification of an inducible catabolic system for sialic acids (nan) in Escherichia coli. J Bacteriol. 1985 Nov;164(2):845–853. doi: 10.1128/jb.164.2.845-853.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Vimr E. R., Troy F. A. Regulation of sialic acid metabolism in Escherichia coli: role of N-acylneuraminate pyruvate-lyase. J Bacteriol. 1985 Nov;164(2):854–860. doi: 10.1128/jb.164.2.854-860.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. WARREN L., FELSENFELD H. The biosynthesis of sialic acids. J Biol Chem. 1962 May;237:1421–1431. [PubMed] [Google Scholar]
  50. WARREN L. The thiobarbituric acid assay of sialic acids. J Biol Chem. 1959 Aug;234(8):1971–1975. [PubMed] [Google Scholar]
  51. Yamasaki R., Bacon B. Three-dimensional structural analysis of the group B polysaccharide of Neisseria meningitidis 6275 by two-dimensional NMR: the polysaccharide is suggested to exist in helical conformations in solution. Biochemistry. 1991 Jan 22;30(3):851–857. doi: 10.1021/bi00217a039. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES