Abstract
The gene encoding the tetrameric malate dehydrogenase (MDH) in a thermophilic Bacillus species (BI) has been cloned in an Escherichia coli plasmid. The nucleotide sequence of the gene, the first to be elucidated for a tetrameric MDH, shows the MDH subunit to contain 312 amino acids and have a molecular mass of 33648 Da, which confirms the experimentally determined value of about 35 kDa. Like the genomic DNA of BI, the MDH gene is relatively AT-rich; this contrasts with the generally GC-rich nature of the DNA of thermophilic Bacillus species. Comparison of amino acid sequences reveals that BI MDH bears greater structural similarity to lactate dehydrogenases (LDHs) than to other (dimeric) MDHs. MDHs and LDHs resemble each other in catalytic mechanism and several other respects. However, whereas MDHs in the majority of organisms are dimers, the tetrameric structure is favoured among LDHs. The stronger structural resemblance that BI MDH has to LDHs than to the dimeric MDHs provides some explanation as to why Bacillus MDH, unlike most other MDHs, is tetrameric. A 1 kb fragment containing the BI MDH gene, produced in a PCR, has been cloned into a high-expression E. coli plasmid vector. BI MDH synthesized from this clone constitutes about 47% of the total protein in cell extracts of the E. coli strain carrying the clone. MDH purified from BI and that purified from the E. coli strain carrying the MDH gene clone appear to be identical proteins by several criteria. A number of characteristics of the MDH have been elucidated, including the molecular masses of the native enzyme and the subunit, N-terminal amino acid sequence, isoelectric point, pH optimum for activity, thermostability, stability to pH, urea and guanidinium chloride and several kinetic parameters. Whereas the MDH is a stable tetramer in the pH range 5-7, it appears to be converted into a stable dimer at pH 3.5. This suggests that the dimer is a stable intermediate in the dissociation of the tetramer to monomers at low pH.
Full Text
The Full Text of this article is available as a PDF (987.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alldread R. M., Halsall D. M., Clarke A. R., Sundaram T. K., Atkinson T., Scawen M. D., Nicholls D. J. Catalytic-rate improvement of a thermostable malate dehydrogenase by a subtle alteration in cofactor binding. Biochem J. 1995 Jan 15;305(Pt 2):539–548. doi: 10.1042/bj3050539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Alldread R. M., Nicholls D. J., Sundaram T. K., Scawen M. D., Atkinson T. Overexpression of the Thermus aquaticus B malate dehydrogenase-encoding gene in Escherichia coli. Gene. 1992 May 1;114(1):139–143. doi: 10.1016/0378-1119(92)90720-a. [DOI] [PubMed] [Google Scholar]
- Bachmann B. J. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev. 1990 Jun;54(2):130–197. doi: 10.1128/mr.54.2.130-197.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birktoft J. J., Bradshaw R. A., Banaszak L. J. Structure of porcine heart cytoplasmic malate dehydrogenase: combining X-ray diffraction and chemical sequence data in structural studies. Biochemistry. 1987 May 19;26(10):2722–2734. doi: 10.1021/bi00384a011. [DOI] [PubMed] [Google Scholar]
- Birktoft J. J., Fernley R. T., Bradshaw R. A., Banaszak L. J. Amino acid sequence homology among the 2-hydroxy acid dehydrogenases: mitochondrial and cytoplasmic malate dehydrogenases form a homologous system with lactate dehydrogenase. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6166–6170. doi: 10.1073/pnas.79.20.6166. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brehm J. K., Chambers S. P., Brown K. J., Atkinson T., Minton N. P. Molecular cloning and nucleotide sequence determination of the Bacillus stearothermophilus NCA 1503 superoxide dismutase gene and its overexpression in Escherichia coli. Appl Microbiol Biotechnol. 1991 Dec;36(3):358–363. doi: 10.1007/BF00208156. [DOI] [PubMed] [Google Scholar]
- Cameron A. D., Roper D. I., Moreton K. M., Muirhead H., Holbrook J. J., Wigley D. B. Allosteric activation in Bacillus stearothermophilus lactate dehydrogenase investigated by an X-ray crystallographic analysis of a mutant designed to prevent tetramerization of the enzyme. J Mol Biol. 1994 May 13;238(4):615–625. doi: 10.1006/jmbi.1994.1318. [DOI] [PubMed] [Google Scholar]
- Chambers S. P., Prior S. E., Barstow D. A., Minton N. P. The pMTL nic- cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene. 1988 Aug 15;68(1):139–149. doi: 10.1016/0378-1119(88)90606-3. [DOI] [PubMed] [Google Scholar]
- Clarke A. R., Atkinson T., Holbrook J. J. From analysis to synthesis: new ligand binding sites on the lactate dehydrogenase framework. Part I. Trends Biochem Sci. 1989 Mar;14(3):101–105. doi: 10.1016/0968-0004(89)90131-x. [DOI] [PubMed] [Google Scholar]
- Clarke A. R., Smith C. J., Hart K. W., Wilks H. M., Chia W. N., Lee T. V., Birktoft J. J., Banaszak L. J., Barstow D. A., Atkinson T. Rational construction of a 2-hydroxyacid dehydrogenase with new substrate specificity. Biochem Biophys Res Commun. 1987 Oct 14;148(1):15–23. doi: 10.1016/0006-291x(87)91070-9. [DOI] [PubMed] [Google Scholar]
- Clarke A. R., Wigley D. B., Barstow D. A., Chia W. N., Atkinson T., Holbrook J. J. A single amino acid substitution deregulates a bacterial lactate dehydrogenase and stabilizes its tetrameric structure. Biochim Biophys Acta. 1987 May 27;913(1):72–80. doi: 10.1016/0167-4838(87)90234-2. [DOI] [PubMed] [Google Scholar]
- Cohen S. N., Chang A. C., Hsu L. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc Natl Acad Sci U S A. 1972 Aug;69(8):2110–2114. doi: 10.1073/pnas.69.8.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Devereux J., Haeberli P., Smithies O. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 1984 Jan 11;12(1 Pt 1):387–395. doi: 10.1093/nar/12.1part1.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Duffield M. L., Nicholls D. J., Atkinson T., Scawen M. D. An investigation of the thermal stabilities of two malate dehydrogenases by comparison of their three-dimensional structures. J Mol Graph. 1994 Mar;12(1):14-21, 34. doi: 10.1016/0263-7855(94)80003-0. [DOI] [PubMed] [Google Scholar]
- Epstein I., Grossowicz N. Prototrophic thermophilic bacillus: isolation, properties, and kinetics of growth. J Bacteriol. 1969 Aug;99(2):414–417. doi: 10.1128/jb.99.2.414-417.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Eventoff W., Rossmann M. G., Taylor S. S., Torff H. J., Meyer H., Keil W., Kiltz H. H. Structural adaptations of lactate dehydrogenase isozymes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):2677–2681. doi: 10.1073/pnas.74.7.2677. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gleason W. B., Fu Z., Birktoft J., Banaszak L. Refined crystal structure of mitochondrial malate dehydrogenase from porcine heart and the consensus structure for dicarboxylic acid oxidoreductases. Biochemistry. 1994 Mar 1;33(8):2078–2088. doi: 10.1021/bi00174a014. [DOI] [PubMed] [Google Scholar]
- Goward C. R., Miller J., Nicholls D. J., Irons L. I., Scawen M. D., O'Brien R., Chowdhry B. Z. A single amino acid mutation enhances the thermal stability of Escherichia coli malate dehydrogenase. Eur J Biochem. 1994 Aug 15;224(1):249–255. doi: 10.1111/j.1432-1033.1994.tb20018.x. [DOI] [PubMed] [Google Scholar]
- Grau U. M., Trommer W. E., Rossmann M. G. Structure of the active ternary complex of pig heart lactate dehydrogenase with S-lac-NAD at 2.7 A resolution. J Mol Biol. 1981 Sep 15;151(2):289–307. doi: 10.1016/0022-2836(81)90516-7. [DOI] [PubMed] [Google Scholar]
- Hall M. D., Levitt D. G., Banaszak L. J. Crystal structure of Escherichia coli malate dehydrogenase. A complex of the apoenzyme and citrate at 1.87 A resolution. J Mol Biol. 1992 Aug 5;226(3):867–882. doi: 10.1016/0022-2836(92)90637-y. [DOI] [PubMed] [Google Scholar]
- Jackson R. M., Gelpi J. L., Cortes A., Emery D. C., Wilks H. M., Moreton K. M., Halsall D. J., Sleigh R. N., Behan-Martin M., Jones G. R. Construction of a stable dimer of Bacillus stearothermophilus lactate dehydrogenase. Biochemistry. 1992 Sep 8;31(35):8307–8314. doi: 10.1021/bi00150a026. [DOI] [PubMed] [Google Scholar]
- Jin S., Sonenshein A. L. Identification of two distinct Bacillus subtilis citrate synthase genes. J Bacteriol. 1994 Aug;176(15):4669–4679. doi: 10.1128/jb.176.15.4669-4679.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kelly C. A., Nishiyama M., Ohnishi Y., Beppu T., Birktoft J. J. Determinants of protein thermostability observed in the 1.9-A crystal structure of malate dehydrogenase from the thermophilic bacterium Thermus flavus. Biochemistry. 1993 Apr 20;32(15):3913–3922. doi: 10.1021/bi00066a010. [DOI] [PubMed] [Google Scholar]
- McAlister-Henn L. Evolutionary relationships among the malate dehydrogenases. Trends Biochem Sci. 1988 May;13(5):178–181. doi: 10.1016/0968-0004(88)90146-6. [DOI] [PubMed] [Google Scholar]
- Messing J., Vieira J. A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene. 1982 Oct;19(3):269–276. doi: 10.1016/0378-1119(82)90016-6. [DOI] [PubMed] [Google Scholar]
- Nicholls D. J., Miller J., Scawen M. D., Clarke A. R., Holbrook J. J., Atkinson T., Goward C. R. The importance of arginine 102 for the substrate specificity of Escherichia coli malate dehydrogenase. Biochem Biophys Res Commun. 1992 Dec 15;189(2):1057–1062. doi: 10.1016/0006-291x(92)92311-k. [DOI] [PubMed] [Google Scholar]
- Nicholls D. J., Sundaram T. K., Atkinson T., Minton N. P. Cloning and nucleotide sequences of the mdh and sucD genes from Thermus aquaticus B. FEMS Microbiol Lett. 1990 Jun 15;58(1):7–14. doi: 10.1016/0378-1097(90)90093-6. [DOI] [PubMed] [Google Scholar]
- Nishiyama M., Matsubara N., Yamamoto K., Iijima S., Uozumi T., Beppu T. Nucleotide sequence of the malate dehydrogenase gene of Thermus flavus and its mutation directing an increase in enzyme activity. J Biol Chem. 1986 Oct 25;261(30):14178–14183. [PubMed] [Google Scholar]
- Risler J. L., Delorme M. O., Delacroix H., Henaut A. Amino acid substitutions in structurally related proteins. A pattern recognition approach. Determination of a new and efficient scoring matrix. J Mol Biol. 1988 Dec 20;204(4):1019–1029. doi: 10.1016/0022-2836(88)90058-7. [DOI] [PubMed] [Google Scholar]
- Sanger F., Nicklen S., Coulson A. R. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5463–5467. doi: 10.1073/pnas.74.12.5463. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sharp R. J., Bown K. J., Atkinson A. Phenotypic and genotypic characterization of some thermophilic species of Bacillus. J Gen Microbiol. 1980 Mar;117(1):201–210. doi: 10.1099/00221287-117-1-201. [DOI] [PubMed] [Google Scholar]
- Shine J., Dalgarno L. The 3'-terminal sequence of Escherichia coli 16S ribosomal RNA: complementarity to nonsense triplets and ribosome binding sites. Proc Natl Acad Sci U S A. 1974 Apr;71(4):1342–1346. doi: 10.1073/pnas.71.4.1342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith K., Sundaram T. K., Kernick M. Malate dehydrogenases from actinomycetes: structural comparison of Thermoactinomyces enzyme with other actinomycete and Bacillus enzymes. J Bacteriol. 1984 Feb;157(2):684–687. doi: 10.1128/jb.157.2.684-687.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Smith K., Sundaram T. K. Stability and immunological cross-reactivity of malate dehydrogenases from mesophilic and thermophilic sources. Biochim Biophys Acta. 1988 Jul 20;955(2):203–213. doi: 10.1016/0167-4838(88)90194-x. [DOI] [PubMed] [Google Scholar]
- Staniforth R. A., Burston S. G., Smith C. J., Jackson G. S., Badcoe I. G., Atkinson T., Holbrook J. J., Clarke A. R. The energetics and cooperativity of protein folding: a simple experimental analysis based upon the solvation of internal residues. Biochemistry. 1993 Apr 20;32(15):3842–3851. doi: 10.1021/bi00066a003. [DOI] [PubMed] [Google Scholar]
- Sundaram T. K., Cazzulo J. J., Kornberg H. L. Anaplerotic CO2 fixation in mesophilic and thermophilic bacilli. Biochim Biophys Acta. 1969 Nov 18;192(2):355–357. doi: 10.1016/0304-4165(69)90377-8. [DOI] [PubMed] [Google Scholar]
- Sundaram T. K., Wright I. P., Wilkinson A. E. Malate dehydrogenase from thermophilic and mesophilic bacteria. Molecular size, subunit structure, amino acid composition, immunochemical homology, and catalytic activity. Biochemistry. 1980 May 13;19(10):2017–2022. doi: 10.1021/bi00551a002. [DOI] [PubMed] [Google Scholar]
- Vogel R. F., Entian K. D., Mecke D. Cloning and sequence of the mdh structural gene of Escherichia coli coding for malate dehydrogenase. Arch Microbiol. 1987;149(1):36–42. doi: 10.1007/BF00423133. [DOI] [PubMed] [Google Scholar]
- White D., Sharp R. J., Priest F. G. A polyphasic taxonomic study of thermophilic bacilli from a wide geographical area. Antonie Van Leeuwenhoek. 1993;64(3-4):357–386. doi: 10.1007/BF00873093. [DOI] [PubMed] [Google Scholar]