Abstract
Lipophosphoglycan (LPG), is the major cell surface molecule of promastigotes of all Leishmania species. It is comprised of three domains: a conserved glycosylphosphatidylinositol anchor linked to a repeating phosphorylated disaccharide (P2; PO4-6Gal beta 1-4Man alpha 1-) backbone and capped with a neutral oligosaccharide. In Leishmania major the backbone is substituted at the C(O)3 of the Galp residue with side chains containing Galp, Glcp and Arap residues whereas in Leishmania donovani the backbone is unsubstituted. We report the solubilization of a (beta 1-3) galactosyltransferase [(beta 1-3)GalT] from a L. major microsomal preparation using Triton X-100. Solubilization occurs with a 10-fold stimulation of enzyme activity. This (beta 1-3)GalT specifically transfers Gal residues from UDP-Gal to exogenously added L. donovani LPG acceptor. Depolymerization of the [14C]Gal-labelled LPG product with mild acid and analysis by high-performance anion-exchange chromatography detected only the phosphotrisaccharide. (P3; PO4-6([14C]Gal beta 1-3-4Man alpha 1-) found in L. major LPG. This contrasts with the activity of the membrane-bound enzyme which also synthesizes the larger phosphosaccharide units[Ng, Handman and Bacic (1994) Glycobiology 4, 845-853]. This suggests that more than one (beta 1-3)GalT is involved in the addition of these Gal units and that the solubilized activity is the (beta 1-3)GalT that adds the first beta Gal residue to the acceptor. The (beta 1-3)GalT was partially purified by lectin-affinity chromatography and used to establish the K(m) values for UDP-Gal (445 microM) and L. donovani acceptor (280 microM as P2 molar equivalent) in kinetic assays. Inhibition studies with various glycosides and mono- and di-saccharides established the P2 repeating unit as the minimum acceptor structure recognized by (beta 1-3)GalT. The detergent-solubilized (beta 1-3)GalT was reversibly inactivated by millimolar concentrations of univalent anionic salts. The (beta 1-3)GalT had an absolute requirement for Mn2+ and also required Mg2+ for optimum activity; Mg2+ cannot substitute for Mn2+, which is loosely bound to beta (1-3)GalT and is probably involved in the correct folding of the enzyme. The (beta 1-3)GalT was unaffected by Ca2+ ions, but were irreversibly inactivated by micromolar levels of transition metal ions (Cu2+ > Zn2+ > Ni2 > Co2+). The (beta 1-3)GalT activity was also inhibited by diethyl pyrocarbonate, but not by N-ethylmaleimide or iodoacetamide, suggesting that active-site histidine residues, rather than cysteine residue(s), are important for enzyme activity.
Full Text
The Full Text of this article is available as a PDF (628.7 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Amthauer R., Kodukula K., Gerber L., Udenfriend S. Evidence that the putative COOH-terminal signal transamidase involved in glycosylphosphatidylinositol protein synthesis is present in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 1993 May 1;90(9):3973–3977. doi: 10.1073/pnas.90.9.3973. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arnold F. H. Metal-affinity separations: a new dimension in protein processing. Biotechnology (N Y) 1991 Feb;9(2):151–156. doi: 10.1038/nbt0291-151. [DOI] [PubMed] [Google Scholar]
- Carver M. A., Turco S. J. Biosynthesis of lipophosphoglycan from Leishmania donovani: characterization of mannosylphosphate transfer in vitro. Arch Biochem Biophys. 1992 Jun;295(2):309–317. doi: 10.1016/0003-9861(92)90523-y. [DOI] [PubMed] [Google Scholar]
- Carver M. A., Turco S. J. Cell-free biosynthesis of lipophosphoglycan from Leishmania donovani. Characterization of microsomal galactosyltransferase and mannosyltransferase activities. J Biol Chem. 1991 Jun 15;266(17):10974–10981. [PubMed] [Google Scholar]
- Do K. Y., Do S. I., Cummings R. D. Alpha-lactalbumin induces bovine milk beta 1,4-galactosyltransferase to utilize UDP-GalNAc. J Biol Chem. 1995 Aug 4;270(31):18447–18451. doi: 10.1074/jbc.270.31.18447. [DOI] [PubMed] [Google Scholar]
- Elling L. Effect of metal ions on sucrose synthase from rice grains--a study on enzyme inhibition and enzyme topography. Glycobiology. 1995 Mar;5(2):201–206. doi: 10.1093/glycob/5.2.201. [DOI] [PubMed] [Google Scholar]
- Handman E., Hocking R. E., Mitchell G. F., Spithill T. W. Isolation and characterization of infective and non-infective clones of Leishmania tropica. Mol Biochem Parasitol. 1983 Feb;7(2):111–126. doi: 10.1016/0166-6851(83)90039-7. [DOI] [PubMed] [Google Scholar]
- Handman E., Schnur L. F., Spithill T. W., Mitchell G. F. Passive transfer of Leishmania lipopolysaccharide confers parasite survival in macrophages. J Immunol. 1986 Dec 1;137(11):3608–3613. [PubMed] [Google Scholar]
- Ilg T., Etges R., Overath P., McConville M. J., Thomas-Oates J., Thomas J., Homans S. W., Ferguson M. A. Structure of Leishmania mexicana lipophosphoglycan. J Biol Chem. 1992 Apr 5;267(10):6834–6840. [PubMed] [Google Scholar]
- Ilg T., Overath P., Ferguson M. A., Rutherford T., Campbell D. G., McConville M. J. O- and N-glycosylation of the Leishmania mexicana-secreted acid phosphatase. Characterization of a new class of phosphoserine-linked glycans. J Biol Chem. 1994 Sep 30;269(39):24073–24081. [PubMed] [Google Scholar]
- Kelleher M., Bacic A., Handman E. Identification of a macrophage-binding determinant on lipophosphoglycan from Leishmania major promastigotes. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):6–10. doi: 10.1073/pnas.89.1.6. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kjellén L., Lindahl U. Proteoglycans: structures and interactions. Annu Rev Biochem. 1991;60:443–475. doi: 10.1146/annurev.bi.60.070191.002303. [DOI] [PubMed] [Google Scholar]
- Kornfeld R., Kornfeld S. Assembly of asparagine-linked oligosaccharides. Annu Rev Biochem. 1985;54:631–664. doi: 10.1146/annurev.bi.54.070185.003215. [DOI] [PubMed] [Google Scholar]
- McConville M. J., Bacic A. A family of glycoinositol phospholipids from Leishmania major. Isolation, characterization, and antigenicity. J Biol Chem. 1989 Jan 15;264(2):757–766. [PubMed] [Google Scholar]
- McConville M. J., Ferguson M. A. The structure, biosynthesis and function of glycosylated phosphatidylinositols in the parasitic protozoa and higher eukaryotes. Biochem J. 1993 Sep 1;294(Pt 2):305–324. doi: 10.1042/bj2940305. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McConville M. J., Thomas-Oates J. E., Ferguson M. A., Homans S. W. Structure of the lipophosphoglycan from Leishmania major. J Biol Chem. 1990 Nov 15;265(32):19611–19623. [PubMed] [Google Scholar]
- Mensa-Wilmot K., LeBowitz J. H., Chang K. P., al-Qahtani A., McGwire B. S., Tucker S., Morris J. C. A glycosylphosphatidylinositol (GPI)-negative phenotype produced in Leishmania major by GPI phospholipase C from Trypanosoma brucei: topography of two GPI pathways. J Cell Biol. 1994 Mar;124(6):935–947. doi: 10.1083/jcb.124.6.935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Milne K. G., Field R. A., Masterson W. J., Cottaz S., Brimacombe J. S., Ferguson M. A. Partial purification and characterization of the N-acetylglucosaminyl-phosphatidylinositol de-N-acetylase of glycosylphosphatidylinositol anchor biosynthesis in African trypanosomes. J Biol Chem. 1994 Jun 10;269(23):16403–16408. [PubMed] [Google Scholar]
- Moody S. F., Handman E., McConville M. J., Bacic A. The structure of Leishmania major amastigote lipophosphoglycan. J Biol Chem. 1993 Sep 5;268(25):18457–18466. [PubMed] [Google Scholar]
- Ng K. F., Schwartz N. B. Solubilization and partial purification of hyaluronate synthetase from oligodendroglioma cells. J Biol Chem. 1989 Jul 15;264(20):11776–11783. [PubMed] [Google Scholar]
- Ng K., Handman E., Bacic A. Biosynthesis of lipophosphoglycan from Leishmania major: characterization of (beta 1-3)-galactosyltransferase(s). Glycobiology. 1994 Dec;4(6):845–853. doi: 10.1093/glycob/4.6.845. [DOI] [PubMed] [Google Scholar]
- Proudfoot L., Schneider P., Ferguson M. A., McConville M. J. Biosynthesis of the glycolipid anchor of lipophosphoglycan and the structurally related glycoinositolphospholipids from Leishmania major. Biochem J. 1995 May 15;308(Pt 1):45–55. doi: 10.1042/bj3080045. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ryan K. A., Garraway L. A., Descoteaux A., Turco S. J., Beverley S. M. Isolation of virulence genes directing surface glycosyl-phosphatidylinositol synthesis by functional complementation of Leishmania. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8609–8613. doi: 10.1073/pnas.90.18.8609. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider P., Schnur L. F., Jaffe C. L., Ferguson M. A., McConville M. J. Glycoinositol-phospholipid profiles of four serotypically distinct Old World Leishmania strains. Biochem J. 1994 Dec 1;304(Pt 2):603–609. doi: 10.1042/bj3040603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thomas J. R., McConville M. J., Thomas-Oates J. E., Homans S. W., Ferguson M. A., Gorin P. A., Greis K. D., Turco S. J. Refined structure of the lipophosphoglycan of Leishmania donovani. J Biol Chem. 1992 Apr 5;267(10):6829–6833. [PubMed] [Google Scholar]
- Turco S. J., Descoteaux A. The lipophosphoglycan of Leishmania parasites. Annu Rev Microbiol. 1992;46:65–94. doi: 10.1146/annurev.mi.46.100192.000433. [DOI] [PubMed] [Google Scholar]
- Vidugiriene J., Menon A. K. Early lipid intermediates in glycosyl-phosphatidylinositol anchor assembly are synthesized in the ER and located in the cytoplasmic leaflet of the ER membrane bilayer. J Cell Biol. 1993 Jun;121(5):987–996. doi: 10.1083/jcb.121.5.987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Yip T. T., Nakagawa Y., Porath J. Evaluation of the interaction of peptides with Cu(II), Ni(II), and Zn(II) by high-performance immobilized metal ion affinity chromatography. Anal Biochem. 1989 Nov 15;183(1):159–171. doi: 10.1016/0003-2697(89)90184-x. [DOI] [PubMed] [Google Scholar]