Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):267–272. doi: 10.1042/bj3170267

Flavinylation in wild-type trimethylamine dehydrogenase and differentially charged mutant enzymes: a study of the protein environment around the N1 of the flavin isoalloxazine.

M Mewies 1, L C Packman 1, F S Mathews 1, N S Scrutton 1
PMCID: PMC1217472  PMID: 8694773

Abstract

In wild-type trimethylamine dehydrogenase, residue Arg-222 is positioned close to the isoalloxazine N1/C2 positions of the 6S-cysteinyl FMN. The positively charged guanidino group of Arg-222 is thought to stabilize negative charge as it develops at the N1 position of the flavin during flavinylation of the enzyme. Three mutant trimethylamine dehydrogenases were constructed to alter the nature of the charge at residue 222. The amount of active flavinylated enzyme produced in Escherichia coli is reduced when Arg-222 is replaced by lysine (mutant R222K). Removal or reversal of the charge at residue 222 (mutants R222V and R222E, respectively) leads to the production of inactive enzymes that are totally devoid of flavin. A comparison of the CD spectra for the wild-type and mutant enzymes revealed no major structural change following mutagenesis. Like the wild-type protein, each mutant enzyme contained stoichiometric amounts of the 4Fe-4S cluster and ADP. Electrospray MS also indicated that the native and recombinant wild-type enzymes were isolated as a mixture of deflavo and holo enzyme, but that each of the mutant enzymes have masses expected for deflavo trimethylamine dehydrogenase. The MS data indicate that the lack of assembly of the mutant proteins with FMN is not due to detectable levels of post-translational modification of significant mass. The experiments reported here indicate that simple mutagenic changes in the FMN-binding site can reduce the proportion of flavinylated enzyme isolated from Escherichia coli and that positive charge is required at residue 222 if flavinylation is to proceed.

Full Text

The Full Text of this article is available as a PDF (442.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Biggin M. D., Gibson T. J., Hong G. F. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc Natl Acad Sci U S A. 1983 Jul;80(13):3963–3965. doi: 10.1073/pnas.80.13.3963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bocanegra J. A., Scrutton N. S., Perham R. N. Creation of an NADP-dependent pyruvate dehydrogenase multienzyme complex by protein engineering. Biochemistry. 1993 Mar 23;32(11):2737–2740. doi: 10.1021/bi00062a001. [DOI] [PubMed] [Google Scholar]
  3. Boyd G., Mathews F. S., Packman L. C., Scrutton N. S. Trimethylamine dehydrogenase of bacterium W3A1. Molecular cloning, sequence determination and over-expression of the gene. FEBS Lett. 1992 Aug 24;308(3):271–276. doi: 10.1016/0014-5793(92)81291-s. [DOI] [PubMed] [Google Scholar]
  4. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  5. Brandsch R., Bichler V. Autoflavinylation of apo6-hydroxy-D-nicotine oxidase. J Biol Chem. 1991 Oct 5;266(28):19056–19062. [PubMed] [Google Scholar]
  6. Brandsch R., Bichler V., Mauch L., Decker K. Cysteine to serine replacements in 6-hydroxy-D-nicotine oxidase. Consequences for enzyme activity, cofactor incorporation, and formation of high molecular weight protein complexes with molecular chaperones (GroEL). J Biol Chem. 1993 Jun 15;268(17):12724–12729. [PubMed] [Google Scholar]
  7. Chen D., Swenson R. P. Cloning, sequence analysis, and expression of the genes encoding the two subunits of the methylotrophic bacterium W3A1 electron transfer flavoprotein. J Biol Chem. 1994 Dec 23;269(51):32120–32130. [PubMed] [Google Scholar]
  8. Cleland W. W. Substrate inhibition. Methods Enzymol. 1979;63:500–513. [PubMed] [Google Scholar]
  9. Decker K., Brandsch R. Flavoproteins with a covalent histidyl(N3)-8 alpha-riboflavin linkage. Biofactors. 1991 Jun;3(2):69–81. [PubMed] [Google Scholar]
  10. Deonarain M. P., Berry A., Scrutton N. S., Perham R. N. Alternative proton donors/acceptors in the catalytic mechanism of the glutathione reductase of Escherichia coli: the role of histidine-439 and tyrosine-99. Biochemistry. 1989 Dec 12;28(25):9602–9607. doi: 10.1021/bi00451a008. [DOI] [PubMed] [Google Scholar]
  11. Gondry M., Diêp Lê K. H., Manson F. D., Chapman S. K., Mathews F. S., Reid G. A., Lederer F. On the lack of coordination between protein folding and flavin insertion in Escherichia coli for flavocytochrome b2 mutant forms Y254L and D282N. Protein Sci. 1995 May;4(5):925–935. doi: 10.1002/pro.5560040512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Karplus P. A., Schulz G. E. Refined structure of glutathione reductase at 1.54 A resolution. J Mol Biol. 1987 Jun 5;195(3):701–729. doi: 10.1016/0022-2836(87)90191-4. [DOI] [PubMed] [Google Scholar]
  13. Kenney W. C., McIntire W., Steenkamp D. J. Amino acid sequence of a cofactor peptide from trimethylamine dehydrogenase. FEBS Lett. 1978 Jan 1;85(1):137–140. doi: 10.1016/0014-5793(78)81265-4. [DOI] [PubMed] [Google Scholar]
  14. Koyama Y., Yamamoto-Otake H., Suzuki M., Nakano E. Cloning and expression of the sarcosine oxidase gene from Bacillus sp. NS-129 in Escherichia coli. Agric Biol Chem. 1991 May;55(5):1259–1263. [PubMed] [Google Scholar]
  15. Lehman T. C., Hale D. E., Bhala A., Thorpe C. An acyl-coenzyme A dehydrogenase assay utilizing the ferricenium ion. Anal Biochem. 1990 May 1;186(2):280–284. doi: 10.1016/0003-2697(90)90080-s. [DOI] [PubMed] [Google Scholar]
  16. Lim L. W., Mathews F. S., Steenkamp D. J. Identification of ADP in the iron-sulfur flavoprotein trimethylamine dehydrogenase. J Biol Chem. 1988 Mar 5;263(7):3075–3078. [PubMed] [Google Scholar]
  17. Lim L. W., Shamala N., Mathews F. S., Steenkamp D. J., Hamlin R., Xuong N. H. Three-dimensional structure of the iron-sulfur flavoprotein trimethylamine dehydrogenase at 2.4-A resolution. J Biol Chem. 1986 Nov 15;261(32):15140–15146. [PubMed] [Google Scholar]
  18. Mauch L., Bichler V., Brandsch R. Lysine can replace arginine 67 in the mediation of covalent attachment of FAD to histidine 71 of 6-hydroxy-D-nicotine oxidase. J Biol Chem. 1990 Aug 5;265(22):12761–12762. [PubMed] [Google Scholar]
  19. Mewies M., Packman L. C., Scrutton N. S. Dissection of the FMN-binding site in trimethylamine dehydrogenase. Biochem Soc Trans. 1995 Nov;23(4):509S–509S. doi: 10.1042/bst023509s. [DOI] [PubMed] [Google Scholar]
  20. Packman L. C., Mewies M., Scrutton N. S. The flavinylation reaction of trimethylamine dehydrogenase. Analysis by directed mutagenesis and electrospray mass spectrometry. J Biol Chem. 1995 Jun 2;270(22):13186–13191. doi: 10.1074/jbc.270.22.13186. [DOI] [PubMed] [Google Scholar]
  21. Raine A. R., Yang C. C., Packman L. C., White S. A., Mathews F. S., Scrutton N. S. Protein recognition of ammonium cations using side-chain aromatics: a structural variation for secondary ammonium ligands. Protein Sci. 1995 Dec;4(12):2625–2628. doi: 10.1002/pro.5560041222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Reid G. A., White S., Black M. T., Lederer F., Mathews F. S., Chapman S. K. Probing the active site of flavocytochrome b2 by site-directed mutagenesis. Eur J Biochem. 1988 Dec 15;178(2):329–333. doi: 10.1111/j.1432-1033.1988.tb14454.x. [DOI] [PubMed] [Google Scholar]
  23. Rohlfs R. J., Hille R. The reaction of trimethylamine dehydrogenase with diethylmethylamine. J Biol Chem. 1994 Dec 9;269(49):30869–30879. [PubMed] [Google Scholar]
  24. Sanger F., Coulson A. R., Barrell B. G., Smith A. J., Roe B. A. Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol. 1980 Oct 25;143(2):161–178. doi: 10.1016/0022-2836(80)90196-5. [DOI] [PubMed] [Google Scholar]
  25. Scrutton N. S., Packman L. C., Mathews F. S., Rohlfs R. J., Hille R. Assembly of redox centers in the trimethylamine dehydrogenase of bacterium W3A1. Properties of the wild-type enzyme and a C30A mutant expressed from a cloned gene in Escherichia coli. J Biol Chem. 1994 May 13;269(19):13942–13950. [PubMed] [Google Scholar]
  26. Scrutton N. S. alpha/beta barrel evolution and the modular assembly of enzymes: emerging trends in the flavin oxidase/dehydrogenase family. Bioessays. 1994 Feb;16(2):115–122. doi: 10.1002/bies.950160208. [DOI] [PubMed] [Google Scholar]
  27. Shavlovskii G. M., Tesliar G. E., Strugovshchikova L. P. O reguliatsii flavinogeneza u riboflavinzavisimykh mutantov Escherichia coli. Mikrobiologiia. 1982 Nov-Dec;51(6):986–992. [PubMed] [Google Scholar]
  28. Steenkamp D. J., Gallup M. The natural flavorprotein electron acceptor of trimethylamine dehydrogenase. J Biol Chem. 1978 Jun 25;253(12):4086–4089. [PubMed] [Google Scholar]
  29. Steenkamp D. J., Mallinson J. Trimethylamine dehydrogenase from a methylotrophic bacterium. I. Isolation and steady-state kinetics. Biochim Biophys Acta. 1976 May 13;429(3):705–719. doi: 10.1016/0005-2744(76)90319-3. [DOI] [PubMed] [Google Scholar]
  30. Steenkamp D. J., McIntire W., Kenney W. C. Structure of the covalently bound coenzyme of trimethylamine dehydrogenase. Evidence for a 6-substituted flavin. J Biol Chem. 1978 Apr 25;253(8):2818–2824. [PubMed] [Google Scholar]
  31. Steenkamp D. J., Singer T. P. Participation of the iron-sulphur cluster and of the covalently bound coenzyme of trimethylamine dehydrogenase in catalysis. Biochem J. 1978 Feb 1;169(2):361–369. doi: 10.1042/bj1690361. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Vanoni M. A., Edmondson D. E., Zanetti G., Curti B. Characterization of the flavins and the iron-sulfur centers of glutamate synthase from Azospirillum brasilense by absorption, circular dichroism, and electron paramagnetic resonance spectroscopies. Biochemistry. 1992 May 19;31(19):4613–4623. doi: 10.1021/bi00134a011. [DOI] [PubMed] [Google Scholar]
  33. Xia Z. X., Mathews F. S. Molecular structure of flavocytochrome b2 at 2.4 A resolution. J Mol Biol. 1990 Apr 20;212(4):837–863. doi: 10.1016/0022-2836(90)90240-M. [DOI] [PubMed] [Google Scholar]
  34. Yang C. C., Packman L. C., Scrutton N. S. The primary structure of Hyphomicrobium X dimethylamine dehydrogenase. Relationship to trimethylamine dehydrogenase and implications for substrate recognition. Eur J Biochem. 1995 Aug 15;232(1):264–271. doi: 10.1111/j.1432-1033.1995.tb20808.x. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES