Abstract
The inhibitory subunit (PDE gamma) of the cGMP phosphodiesterase (PDE alpha beta gamma 2) in rod outer segments (ROS) realizes its regulatory role in phototransduction by inhibition of PDE alpha beta catalytic activity. The photoreceptor G-protein, transducin, serves as a transducer from the receptor (rhodopsin) to the effector (PDE) and eliminates the inhibitory effect of PDE gamma by direct interaction with PDE gamma. Our previous study [Udovichenko, Cunnick, Gonzalez and Takemoto (1994) J: Biol. Chem. 269, 9850-9856] has shown that PDE gamma is a substrate for protein kinase C (PKC) from ROS and that phosphorylation by PKC increases the ability of PDE gamma to inhibit PDE alpha beta catalytic activity. Here we report that transducin is less effective in activation of PDE alpha beta (gamma p)2 (a complex of PDE alpha beta with phosphorylated PDE gamma, PDE gamma p) than PDE alpha beta gamma 2. PDE gamma p also increases the rate constant of GTP hydrolysis of transducin (from 0.16 S-1 for non-phosphorylated PDE gamma to 0.21 s-1 for PDE gamma p). These data suggest that phosphorylation of the inhibitory subunit of PDE by PKC may regulate the visual transduction cascade by decreasing the photoresponse.
Full Text
The Full Text of this article is available as a PDF (388.0 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arshavsky VYu, Bownds M. D. Regulation of deactivation of photoreceptor G protein by its target enzyme and cGMP. Nature. 1992 Jun 4;357(6377):416–417. doi: 10.1038/357416a0. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Arshavsky VYu, Gray-Keller M. P., Bownds M. D. cGMP suppresses GTPase activity of a portion of transducin equimolar to phosphodiesterase in frog rod outer segments. Light-induced cGMP decreases as a putative feedback mechanism of the photoresponse. J Biol Chem. 1991 Oct 5;266(28):18530–18537. [PubMed] [Google Scholar]
- Arshavsky V. Y., Dumke C. L., Zhu Y., Artemyev N. O., Skiba N. P., Hamm H. E., Bownds M. D. Regulation of transducin GTPase activity in bovine rod outer segments. J Biol Chem. 1994 Aug 5;269(31):19882–19887. [PubMed] [Google Scholar]
- Baehr W., Devlin M. J., Applebury M. L. Isolation and characterization of cGMP phosphodiesterase from bovine rod outer segments. J Biol Chem. 1979 Nov 25;254(22):11669–11677. [PubMed] [Google Scholar]
- Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
- Brown R. L., Stryer L. Expression in bacteria of functional inhibitory subunit of retinal rod cGMP phosphodiesterase. Proc Natl Acad Sci U S A. 1989 Jul;86(13):4922–4926. doi: 10.1073/pnas.86.13.4922. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chabre M., Deterre P. Molecular mechanism of visual transduction. Eur J Biochem. 1989 Feb 1;179(2):255–266. doi: 10.1111/j.1432-1033.1989.tb14549.x. [DOI] [PubMed] [Google Scholar]
- Deterre P., Bigay J., Forquet F., Robert M., Chabre M. cGMP phosphodiesterase of retinal rods is regulated by two inhibitory subunits. Proc Natl Acad Sci U S A. 1988 Apr;85(8):2424–2428. doi: 10.1073/pnas.85.8.2424. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Detwiler P. B., Gray-Keller M. P. Some unresolved issues in the physiology and biochemistry of phototransduction. Curr Opin Neurobiol. 1992 Aug;2(4):433–438. doi: 10.1016/0959-4388(92)90176-l. [DOI] [PubMed] [Google Scholar]
- Gill S. C., von Hippel P. H. Calculation of protein extinction coefficients from amino acid sequence data. Anal Biochem. 1989 Nov 1;182(2):319–326. doi: 10.1016/0003-2697(89)90602-7. [DOI] [PubMed] [Google Scholar]
- Godchaux W., 3rd, Zimmerman W. F. Membrane-dependent guanine nucleotide binding and GTPase activities of soluble protein from bovine rod cell outer segments. J Biol Chem. 1979 Aug 25;254(16):7874–7884. [PubMed] [Google Scholar]
- Hansen R. S., Charbonneau H., Beavo J. A. Purification of calmodulin-stimulated cyclic nucleotide phosphodiesterase by monoclonal antibody affinity chromatography. Methods Enzymol. 1988;159:543–557. doi: 10.1016/0076-6879(88)59053-5. [DOI] [PubMed] [Google Scholar]
- Hargrave P. A., Hamm H. E., Hofmann K. P. Interaction of rhodopsin with the G-protein, transducin. Bioessays. 1993 Jan;15(1):43–50. doi: 10.1002/bies.950150107. [DOI] [PubMed] [Google Scholar]
- Hayashi F., Lin G. Y., Matsumoto H., Yamazaki A. Phosphatidylinositol-stimulated phosphorylation of an inhibitory subunit of cGMP phosphodiesterase in vertebrate rod photoreceptors. Proc Natl Acad Sci U S A. 1991 May 15;88(10):4333–4337. doi: 10.1073/pnas.88.10.4333. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hurley J. B. Signal transduction enzymes of vertebrate photoreceptors. J Bioenerg Biomembr. 1992 Apr;24(2):219–226. doi: 10.1007/BF00762680. [DOI] [PubMed] [Google Scholar]
- Kelleher D. J., Johnson G. L. Phosphorylation of rhodopsin by protein kinase C in vitro. J Biol Chem. 1986 Apr 5;261(10):4749–4757. [PubMed] [Google Scholar]
- Kincaid R. L., Manganiello V. C. Assay of cyclic nucleotide phosphodiesterase using radiolabeled and fluorescent substrates. Methods Enzymol. 1988;159:457–470. doi: 10.1016/0076-6879(88)59045-6. [DOI] [PubMed] [Google Scholar]
- Koutalos Y., Yau K. W. A rich complexity emerges in phototransduction. Curr Opin Neurobiol. 1993 Aug;3(4):513–519. doi: 10.1016/0959-4388(93)90049-5. [DOI] [PubMed] [Google Scholar]
- Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
- Lagnado L., Baylor D. Signal flow in visual transduction. Neuron. 1992 Jun;8(6):995–1002. doi: 10.1016/0896-6273(92)90122-t. [DOI] [PubMed] [Google Scholar]
- Lee H., Hsu S., Winawer S., Friedman E. Signal transduction through extracellular signal-regulated kinase-like pp57 blocked in differentiated colon carcinoma cells having low levels of c-src kinase. J Biol Chem. 1993 Apr 15;268(11):8181–8187. [PubMed] [Google Scholar]
- Makowske M., Ballester R., Cayre Y., Rosen O. M. Immunochemical evidence that three protein kinase C isozymes increase in abundance during HL-60 differentiation induced by dimethyl sulfoxide and retinoic acid. J Biol Chem. 1988 Mar 5;263(7):3402–3410. [PubMed] [Google Scholar]
- Newton A. C., Koshland D. E., Jr High cooperativity, specificity, and multiplicity in the protein kinase C-lipid interaction. J Biol Chem. 1989 Sep 5;264(25):14909–14915. [PubMed] [Google Scholar]
- Newton A. C., Williams D. S. Does protein kinase C play a role in rhodopsin desensitization? Trends Biochem Sci. 1993 Aug;18(8):275–277. doi: 10.1016/0968-0004(93)90032-i. [DOI] [PubMed] [Google Scholar]
- Newton A. C., Williams D. S. Involvement of protein kinase C in the phosphorylation of rhodopsin. J Biol Chem. 1991 Sep 25;266(27):17725–17728. [PubMed] [Google Scholar]
- Ono Y., Fujii T., Ogita K., Kikkawa U., Igarashi K., Nishizuka Y. Protein kinase C zeta subspecies from rat brain: its structure, expression, and properties. Proc Natl Acad Sci U S A. 1989 May;86(9):3099–3103. doi: 10.1073/pnas.86.9.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Otto-Bruc A., Antonny B., Vuong T. M., Chardin P., Chabre M. Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry. 1993 Aug 24;32(33):8636–8645. doi: 10.1021/bi00084a035. [DOI] [PubMed] [Google Scholar]
- Pagès F., Deterre P., Pfister C. Enhanced GTPase activity of transducin when bound to cGMP phosphodiesterase in bovine retinal rods. J Biol Chem. 1992 Nov 5;267(31):22018–22021. [PubMed] [Google Scholar]
- Pagès F., Deterre P., Pfister C. Enhancement by phosphodiesterase subunits of the rate of GTP hydrolysis by transducin in bovine retinal rods. Essential role of the phosphodiesterase catalytic core. J Biol Chem. 1993 Dec 15;268(35):26358–26364. [PubMed] [Google Scholar]
- Papermaster D. S., Dreyer W. J. Rhodopsin content in the outer segment membranes of bovine and frog retinal rods. Biochemistry. 1974 May 21;13(11):2438–2444. doi: 10.1021/bi00708a031. [DOI] [PubMed] [Google Scholar]
- Pfister C., Bennett N., Bruckert F., Catty P., Clerc A., Pagès F., Deterre P. Interactions of a G-protein with its effector: transducin and cGMP phosphodiesterase in retinal rods. Cell Signal. 1993 May;5(3):235–241. doi: 10.1016/0898-6568(93)90015-e. [DOI] [PubMed] [Google Scholar]
- Pugh E. N., Jr, Lamb T. D. Cyclic GMP and calcium: the internal messengers of excitation and adaptation in vertebrate photoreceptors. Vision Res. 1990;30(12):1923–1948. doi: 10.1016/0042-6989(90)90013-b. [DOI] [PubMed] [Google Scholar]
- Stryer L. Visual excitation and recovery. J Biol Chem. 1991 Jun 15;266(17):10711–10714. [PubMed] [Google Scholar]
- Udovichenko I. P., Cunnick J., Gonzales K., Takemoto D. J. Phosphorylation of bovine rod photoreceptor cyclic GMP phosphodiesterase. Biochem J. 1993 Oct 1;295(Pt 1):49–55. doi: 10.1042/bj2950049. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Udovichenko I. P., Cunnick J., Gonzalez K., Takemoto D. J. Functional effect of phosphorylation of the photoreceptor phosphodiesterase inhibitory subunit by protein kinase C. J Biol Chem. 1994 Apr 1;269(13):9850–9856. [PubMed] [Google Scholar]
- Udovichenko I. P., Cunnick J., Gonzalez K., Takemoto D. J. The visual transduction and the phosphoinositide system: a link. Cell Signal. 1994 Aug;6(6):601–605. doi: 10.1016/0898-6568(94)90043-4. [DOI] [PubMed] [Google Scholar]
- Whalen M. M., Bitensky M. W. Comparison of the phosphodiesterase inhibitory subunit interactions of frog and bovine rod outer segments. Biochem J. 1989 Apr 1;259(1):13–19. doi: 10.1042/bj2590013. [DOI] [PMC free article] [PubMed] [Google Scholar]