Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1996 Jul 1;317(Pt 1):59–64. doi: 10.1042/bj3170059

Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins.

G K Hunter 1, P V Hauschka 1, A R Poole 1, L C Rosenberg 1, H A Goldberg 1
PMCID: PMC1217486  PMID: 8694787

Abstract

Many proteins found in mineralized tissues have been proposed to function as regulators of the mineralization process, either as nucleators or inhibitors of hydroxyapatite (HA) formation. We have studied the HA-nucleating and HA-inhibiting properties of proteins from bone [osteocalcin (OC), osteopontin (OPN), osteonectin (ON) and bone sialoprotein (BSP)], dentine [phosphophoryn (DPP)] and calcified cartilage [chondrocalcin (CC)] over a wide range of concentrations. Nucleation of HA was studied with a steady-state agarose gel system at sub-threshold [Ca] x [PO4] product. BSP and DPP exhibited nucleation activity at minimum concentrations of 0.3 microgram/ml (9 nM) and 10 micrograms/ml (67 nM) respectively. OC, OPN, ON and CC all lacked nucleation activity at concentrations up to 100 micrograms/ml. Inhibition of HA formation de novo was studied with calcium phosphate solutions buffered by autotitration. OPN was found to be a potent inhibitor of HA formation [IC50 = 0.32 microgram/ml (0.01 microM)] whereas OC was of lower potency [IC50 = 6.1 micrograms/ml (1.1 microM)]; BSP, ON and CC all lacked inhibitory activity at concentrations up to 10 micrograms/ml. The effect of OPN on HA formation de novo is mainly to inhibit crystal growth, whereas OC delays nucleation. These findings are consistent with the view that BSP and DPP may play roles in the initiation of mineralization in bone and dentine respectively. OPN seems to be the mineralized tissue protein most likely to function in the inhibition of HA formation, possibly by preventing phase separation in tissue fluids of high supersaturation.

Full Text

The Full Text of this article is available as a PDF (373.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alini M., Matsui Y., Dodge G. R., Poole A. R. The extracellular matrix of cartilage in the growth plate before and during calcification: changes in composition and degradation of type II collagen. Calcif Tissue Int. 1992 Apr;50(4):327–335. doi: 10.1007/BF00301630. [DOI] [PubMed] [Google Scholar]
  2. Bianco P., Fisher L. W., Young M. F., Termine J. D., Robey P. G. Expression of bone sialoprotein (BSP) in developing human tissues. Calcif Tissue Int. 1991 Dec;49(6):421–426. doi: 10.1007/BF02555854. [DOI] [PubMed] [Google Scholar]
  3. Boskey A. L., Maresca M., Doty S., Sabsay B., Veis A. Concentration-dependent effects of dentin phosphophoryn in the regulation of in vitro hydroxyapatite formation and growth. Bone Miner. 1990 Oct;11(1):55–65. doi: 10.1016/0169-6009(90)90015-8. [DOI] [PubMed] [Google Scholar]
  4. Boskey A. L., Maresca M., Ullrich W., Doty S. B., Butler W. T., Prince C. W. Osteopontin-hydroxyapatite interactions in vitro: inhibition of hydroxyapatite formation and growth in a gelatin-gel. Bone Miner. 1993 Aug;22(2):147–159. doi: 10.1016/s0169-6009(08)80225-5. [DOI] [PubMed] [Google Scholar]
  5. Boskey A. L., Wians F. H., Jr, Hauschka P. V. The effect of osteocalcin on in vitro lipid-induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif Tissue Int. 1985 Jan;37(1):57–62. doi: 10.1007/BF02557680. [DOI] [PubMed] [Google Scholar]
  6. Bronckers A. L., Gay S., Dimuzio M. T., Butler W. T. Immunolocalization of gamma-carboxyglutamic acid containing proteins in developing rat bones. Coll Relat Res. 1985 Jun;5(3):273–281. doi: 10.1016/s0174-173x(85)80017-0. [DOI] [PubMed] [Google Scholar]
  7. Butler W. T., Bhown M., Dimuzio M. T., Linde A. Nonocollagenous proteins of dentin. Isolation and partial characterization of rat dentin proteins and proteoglycans using a three-step preparative method. Coll Relat Res. 1981 Feb;1(2):187–199. doi: 10.1016/s0174-173x(81)80019-2. [DOI] [PubMed] [Google Scholar]
  8. Carr S. A., Hauschka P. V., Biemann K. Gas chromatographic mass spectrometric sequence determination of osteocalcin, a gamma-carboxyglutamic acid-containing protein from chicken bone. J Biol Chem. 1981 Oct 10;256(19):9944–9950. [PubMed] [Google Scholar]
  9. Chen Y., Bal B. S., Gorski J. P. Calcium and collagen binding properties of osteopontin, bone sialoprotein, and bone acidic glycoprotein-75 from bone. J Biol Chem. 1992 Dec 5;267(34):24871–24878. [PubMed] [Google Scholar]
  10. Choi H. U., Tang L. H., Johnson T. L., Pal S., Rosenberg L. C., Reiner A., Poole A. R. Isolation and characterization of a 35,000 molecular weight subunit fetal cartilage matrix protein. J Biol Chem. 1983 Jan 10;258(1):655–661. [PubMed] [Google Scholar]
  11. Dimuzio M. T., Veis A. Phosphophoryns-major noncollagenous proteins of rat incisor dentin. Calcif Tissue Res. 1978 May 26;25(2):169–178. doi: 10.1007/BF02010765. [DOI] [PubMed] [Google Scholar]
  12. Doi Y., Horiguchi T., Kim S. H., Moriwaki Y., Wakamatsu N., Adachi M., Ibaraki K., Moriyama K., Sasaki S., Shimokawa H. Effects of non-collagenous proteins on the formation of apatite in calcium beta-glycerophosphate solutions. Arch Oral Biol. 1992 Jan;37(1):15–21. doi: 10.1016/0003-9969(92)90147-z. [DOI] [PubMed] [Google Scholar]
  13. Doi Y., Horiguchi T., Kim S. H., Moriwaki Y., Wakamatsu N., Adachi M., Shigeta H., Sasaki S., Shimokawa H. Immobilized DPP and other proteins modify OCP formation. Calcif Tissue Int. 1993 Feb;52(2):139–145. doi: 10.1007/BF00308323. [DOI] [PubMed] [Google Scholar]
  14. Doi Y., Okuda R., Takezawa Y., Shibata S., Moriwaki Y., Wakamatsu N., Shimizu N., Moriyama K., Shimokawa H. Osteonectin inhibiting de novo formation of apatite in the presence of collagen. Calcif Tissue Int. 1989 Mar;44(3):200–208. doi: 10.1007/BF02556565. [DOI] [PubMed] [Google Scholar]
  15. Domenicucci C., Goldberg H. A., Hofmann T., Isenman D., Wasi S., Sodek J. Characterization of porcine osteonectin extracted from foetal calvariae. Biochem J. 1988 Jul 1;253(1):139–151. doi: 10.1042/bj2530139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Franzén A., Heinegård D. Isolation and characterization of two sialoproteins present only in bone calcified matrix. Biochem J. 1985 Dec 15;232(3):715–724. doi: 10.1042/bj2320715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fujisawa R., Butler W. T., Brunn J. C., Zhou H. Y., Kuboki Y. Differences in composition of cell-attachment sialoproteins between dentin and bone. J Dent Res. 1993 Aug;72(8):1222–1226. doi: 10.1177/00220345930720081001. [DOI] [PubMed] [Google Scholar]
  18. Fujisawa R., Kuboki Y., Sasaki S. Effects of dentin phosphophoryn on precipitation of calcium phosphate in gel in vitro. Calcif Tissue Int. 1987 Jul;41(1):44–47. doi: 10.1007/BF02555130. [DOI] [PubMed] [Google Scholar]
  19. Hauschka P. V., Lian J. B., Cole D. E., Gundberg C. M. Osteocalcin and matrix Gla protein: vitamin K-dependent proteins in bone. Physiol Rev. 1989 Jul;69(3):990–1047. doi: 10.1152/physrev.1989.69.3.990. [DOI] [PubMed] [Google Scholar]
  20. Hauschka P. V., Lian J. B., Gallop P. M. Direct identification of the calcium-binding amino acid, gamma-carboxyglutamate, in mineralized tissue. Proc Natl Acad Sci U S A. 1975 Oct;72(10):3925–3929. doi: 10.1073/pnas.72.10.3925. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Hunter G. K., Goldberg H. A. Modulation of crystal formation by bone phosphoproteins: role of glutamic acid-rich sequences in the nucleation of hydroxyapatite by bone sialoprotein. Biochem J. 1994 Aug 15;302(Pt 1):175–179. doi: 10.1042/bj3020175. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Hunter G. K., Goldberg H. A. Nucleation of hydroxyapatite by bone sialoprotein. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8562–8565. doi: 10.1073/pnas.90.18.8562. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Hunter G. K., Kyle C. L., Goldberg H. A. Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation. Biochem J. 1994 Jun 15;300(Pt 3):723–728. doi: 10.1042/bj3000723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Lian J. B., McKee M. D., Todd A. M., Gerstenfeld L. C. Induction of bone-related proteins, osteocalcin and osteopontin, and their matrix ultrastructural localization with development of chondrocyte hypertrophy in vitro. J Cell Biochem. 1993 Jun;52(2):206–219. doi: 10.1002/jcb.240520212. [DOI] [PubMed] [Google Scholar]
  25. Linde A., Lussi A., Crenshaw M. A. Mineral induction by immobilized polyanionic proteins. Calcif Tissue Int. 1989 Apr;44(4):286–295. doi: 10.1007/BF02553763. [DOI] [PubMed] [Google Scholar]
  26. Lussi A., Crenshaw M. A., Linde A. Induction and inhibition of hydroxyapatite formation by rat dentine phosphoprotein in vitro. Arch Oral Biol. 1988;33(9):685–691. doi: 10.1016/0003-9969(88)90124-0. [DOI] [PubMed] [Google Scholar]
  27. Menanteau J., Neuman W. F., Neuman M. W. A study of bone proteins which can prevent hydroxyapatite formation. Metab Bone Dis Relat Res. 1982;4(2):157–162. doi: 10.1016/0221-8747(82)90030-3. [DOI] [PubMed] [Google Scholar]
  28. Neugebauer B. M., Moore M. A., Broess M., Gerstenfeld L. C., Hauschka P. V. Characterization of structural sequences in the chicken osteocalcin gene: expression of osteocalcin by maturing osteoblasts and by hypertrophic chondrocytes in vitro. J Bone Miner Res. 1995 Jan;10(1):157–163. doi: 10.1002/jbmr.5650100122. [DOI] [PubMed] [Google Scholar]
  29. Oldberg A., Franzén A., Heinegård D. Cloning and sequence analysis of rat bone sialoprotein (osteopontin) cDNA reveals an Arg-Gly-Asp cell-binding sequence. Proc Natl Acad Sci U S A. 1986 Dec;83(23):8819–8823. doi: 10.1073/pnas.83.23.8819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Oldberg A., Franzén A., Heinegård D. The primary structure of a cell-binding bone sialoprotein. J Biol Chem. 1988 Dec 25;263(36):19430–19432. [PubMed] [Google Scholar]
  31. Pacifici M., Oshima O., Fisher L. W., Young M. F., Shapiro I. M., Leboy P. S. Changes in osteonectin distribution and levels are associated with mineralization of the chicken tibial growth cartilage. Calcif Tissue Int. 1990 Jul;47(1):51–61. doi: 10.1007/BF02555866. [DOI] [PubMed] [Google Scholar]
  32. Poole A. R., Pidoux I., Reiner A., Choi H., Rosenberg L. C. Association of an extracellular protein (chondrocalcin) with the calcification of cartilage in endochondral bone formation. J Cell Biol. 1984 Jan;98(1):54–65. doi: 10.1083/jcb.98.1.54. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Price P. A., Otsuka A. A., Poser J. W., Kristaponis J., Raman N. Characterization of a gamma-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci U S A. 1976 May;73(5):1447–1451. doi: 10.1073/pnas.73.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Prince C. W., Oosawa T., Butler W. T., Tomana M., Bhown A. S., Bhown M., Schrohenloher R. E. Isolation, characterization, and biosynthesis of a phosphorylated glycoprotein from rat bone. J Biol Chem. 1987 Feb 25;262(6):2900–2907. [PubMed] [Google Scholar]
  35. Romberg R. W., Werness P. G., Lollar P., Riggs B. L., Mann K. G. Isolation and characterization of native adult osteonectin. J Biol Chem. 1985 Mar 10;260(5):2728–2736. [PubMed] [Google Scholar]
  36. Romberg R. W., Werness P. G., Riggs B. L., Mann K. G. Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry. 1986 Mar 11;25(5):1176–1180. doi: 10.1021/bi00353a035. [DOI] [PubMed] [Google Scholar]
  37. Sabsay B., Stetler-Stevenson W. G., Lechner J. H., Veis A. Domain structure and sequence distribution in dentin phosphophoryn. Biochem J. 1991 Jun 15;276(Pt 3):699–707. doi: 10.1042/bj2760699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Shapiro H. S., Chen J., Wrana J. L., Zhang Q., Blum M., Sodek J. Characterization of porcine bone sialoprotein: primary structure and cellular expression. Matrix. 1993 Nov;13(6):431–440. doi: 10.1016/s0934-8832(11)80109-5. [DOI] [PubMed] [Google Scholar]
  39. Stetler-Stevenson W. G., Veis A. Bovine dentin phosphophoryn: composition and molecular weight. Biochemistry. 1983 Aug 30;22(18):4326–4335. doi: 10.1021/bi00287a025. [DOI] [PubMed] [Google Scholar]
  40. Termine J. D., Eanes E. D., Conn K. M. Phosphoprotein modulation of apatite crystallization. Calcif Tissue Int. 1980;31(3):247–251. doi: 10.1007/BF02407188. [DOI] [PubMed] [Google Scholar]
  41. Termine J. D., Kleinman H. K., Whitson S. W., Conn K. M., McGarvey M. L., Martin G. R. Osteonectin, a bone-specific protein linking mineral to collagen. Cell. 1981 Oct;26(1 Pt 1):99–105. doi: 10.1016/0092-8674(81)90037-4. [DOI] [PubMed] [Google Scholar]
  42. Young M. F., Kerr J. M., Ibaraki K., Heegaard A. M., Robey P. G. Structure, expression, and regulation of the major noncollagenous matrix proteins of bone. Clin Orthop Relat Res. 1992 Aug;(281):275–294. [PubMed] [Google Scholar]
  43. Zhang Q., Domenicucci C., Goldberg H. A., Wrana J. L., Sodek J. Characterization of fetal porcine bone sialoproteins, secreted phosphoprotein I (SPPI, osteopontin), bone sialoprotein, and a 23-kDa glycoprotein. Demonstration that the 23-kDa glycoprotein is derived from the carboxyl terminus of SPPI. J Biol Chem. 1990 May 5;265(13):7583–7589. [PubMed] [Google Scholar]
  44. van de Loo P. G., Soute B. A., van Haarlem L. J., Vermeer C. The effect of Gla-containing proteins on the precipitation of insoluble salts. Biochem Biophys Res Commun. 1987 Jan 15;142(1):113–119. doi: 10.1016/0006-291x(87)90458-x. [DOI] [PubMed] [Google Scholar]
  45. van den Bos T., Steinfort J., Beertsen W. Effect of bound phosphoproteins and other organic phosphates on alkaline phosphatase-induced mineralization of collagenous matrices in vitro. Bone Miner. 1993 Nov;23(2):81–93. doi: 10.1016/s0169-6009(08)80045-1. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES